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불확실 일반 선형 시스템의 레귤레이션 제어를 위한 사전 제어 성능을 

갖는 개선된 연속 적분 가변구조 시스템

An Improved Continuous Integral Variable Structure Systems with Prescribed Control 

Performance for Regulation Controls of Uncertain General Linear Systems
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Abstract -.In this paper, an improved continuous integral variable structure systems(ICIVSS) with the prescribed control 

performance is designed for simple regulation controls of uncertain general linear systems. An integral sliding surface with an 

integral state having a special initial condition is adopted for removing the reaching phase and predetermining the ideal 

sliding trajectory from a given initial state to the origin in the state space. The ideal sliding dynamics of the integral sliding 

surface is analytically obtained and the solution of the ideal sliding dynamics can predetermine the ideal sliding 

trajectory(integral sliding surface) from the given initial state to the origin. Provided that the value of the integral sliding 

surface is bounded by certain value by means of the continuous input, the norm of the state error to the ideal sliding 

trajectory is analyzed and obtained in Theorem 1. A corresponding discontinuous control input with the exponential stability 

is proposed to generate the perfect sliding mode on the every point of the pre-selected sliding surface. For practical 

applications, the discontinuity of the VSS control input is approximated to be continuous based on the proposed modified 

fixed boundary layer method. The bounded stability by the continuous input is investigated in Theorem 3. With combining 

the results of Theorem 1 and Theorem 3, as the prescribed control performance, the pre specification on the error to the 

ideal sliding trajectory is possible by means of the boundary layer continuous input with the integral sliding surface. The 

suggested algorithm with the continuous input can provide the effective method to increase the control accuracy within the 

boundary layer by means of the increase of the  gain. Through an illustrative design example and simulation study, the 

usefulness of the main results is verified.
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1. Introduction

A great deal of the researches on the variable structure 

systems(VSS) or sliding mode control(SMC) has been reported 

in order to develop the theory of the VSS itself and to 

extend the application fields of the VSS over last 60 years 

[1-4]. The objective of the VSS has been greatly extended 

in a variety control problem such as stabilization, regulation, 

tracking including the model following, identification, and 

even fault detection, etc. because of the robustness against 

the matched uncertainty and disturbance in the sliding 

mode [5, 6]. In regulation controls, the three fundamental 

control problems are the simple regulation[7], set-point 

regulation [8, 19], and point-to-point regulation problems 

[9]. The simple regulation is so called the controllable 

problem that is the control of plants from a given initial 

condition to the zero(origin) in the state space, which is the 

most simple one among the three regulation problems. The 

set-point regulation is so called the reachable problem that 

is the control of plants from the zero(origin) to the 

set-point. And the point-to-point regulation is the most 

complex problem that is the control problem from any 

given initial point to any given set-point. Among them, the 

simple regulation problem of uncertain general linear 

systems is the theme of this paper.

The VSS with the SMC can provide the effective means 

to the control of uncertain linear dynamical systems under 

parameter variations and external disturbances [1-3]. One of 

its essential advantages is the robustness of the controlled 

system to matched parameter uncertainties and external 

disturbances in the sliding mode on the predetermined 

sliding surface [4-6]. However the VSS has the two main 

demerits, those are the reaching phase [3] and chattering 

problems [5]. The reaching phase is the transient period 
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until the controlled system first reaches to the sliding 

surface for the initial condition far from the sliding surface. 

During the reaching phase, the sliding mode does not occur 

so the robustness is not guaranteed [6]. The alleviation of 

this problem is the use of the high-gain feedback to reduce 

the effect of the disturbance [10]. This has the drawbacks 

related to the high-gain feedback sensitive to the unmodeled 

dynamics and actuator saturation. The adaptive change, 

rotation, of the sliding surface to reduce the reaching 

problems is proposed by Itkis in [3]. This method is 

effectively improved by [11] for second order systems. But 

the initial condition is limited to some degree in the phase 

plane. As the similar approaches to Itkis’s, the adaptive 

changing methods, shifting and rotating of the sliding 

surface, so called moving sliding surfaces are reported also 

for second order systems in [12] and for n-th order 

systems in [13] and [14]. The simple integral action without 

a special initial condition is augmented to the VSS in order 

to increase the steady state performance by [8] and [27]. 

But the reaching phase still exists and the overshoot 

problem may occur because the integral state from the zero 

must be re-regulated to the zero. So with the special initial 

condition, the integral state is introduced to the VSS for the 

first time in [15] and [6], which is applied to tracking 

controls of motors in [16] and [17] and to simple 

regulation controls of motors in [18]. The idea of [15] and 

[6] is applied to set-point regulation controls of robot 

manipulators in [19], to simple regulation controls of 

nonlinear systems in [20], and to point-to-point regulation 

controls of uncertain general linear systems in [9]. The 

reaching phase is completely removed by means of making 

the integral sliding surface be zero at    with a special 

initial condition for the integral state in those papers. The 

performance of the output prediction and predetermination 

is obtained by using the solution of the ideal sliding 

dynamics of the integral sliding surface. This ideal of the 

integral sliding surface with the special initial condition in 

[15] is adopted in this paper in order to remove the 

reaching phase completely. A modification of [15] is studied 

in [21] by Utkin and Shi. The similar results to [21] are 

obtained in [22] and [23]. But, the algorithms of [21], 

[22,], and [23] have the drawback of the need of the 

information of the nominal input  to construct the 

nonlinear integral-type sliding surface. This demerit is 

removed in [24] and [25] by means of introducing the 

closed loop dynamics to the integrand in the nonlinear 

integral-type sliding manifolds instead of using . Other 

version of the integral sliding surface is studied in [7] in 

order to adopt the integral of the sliding surface itself to 

the conventional sliding surface. The reaching phase is also 

removed.

On the other hand, the chattering in the VSS is the 

discontinuously high frequency inherent switching of the 

control input according to the sign of the sliding surface in 

the neighborhood of the sliding surface, which is undesirable 

for practical real plants, may excite the unmodeled high 

frequency dynamics, reduces the usable life time of actuators, 

and results in the loss of the asymptotic stability and poor 

steady state tracking error[26]. Until now, there are many 

approaches to attenuate the chattering problems, those are 

the saturation function [17, 27, 28], boundary layer method 

[29-31], observer-based approach [32, 33], higher-order 

approach [34-36], adaptive method [37], fuzzy SMC [31, 

38-40], neural net SMC [38, 41, 42], filtering technique[43], 

digital sliding mode scheme[44], fast nonsingular terminal 

sliding mode [45, 46], and uncertainty and disturbance 

estimation technique[47], etc[48]. Each method has the 

advantages and disadvantages at the same time. The first 

two methods are in which the discontinuous switching 

function, e.g. sign function in the control input is replaced 

by continuous approximation functions. Among all the 

alleviation methods mentioned above, the model-based 

methods for example the observer-based and uncertainty 

and disturbance estimation technique are sensitive the 

mismatches of the parameters between those of models and 

plants. In [29], the fixed boundary layer method is proposed 

to alleviate the chattering problems. The variable boundary 

layer is suggested to effectively cope with chattering 

problems in [30]. By using the fuzzy control theory, the 

thickness of the boundary layer is adjusted in [31]. There 

are the need to compromise between the continuity of the 

control input and tracking accuracy to the sliding surface 

including the origin in most forementioned chattering 

alleviation approaches. The feasible method to increase the 

tracking accuracy and steady performance is necessary with 

the implementation of the continuity of control inputs. In 

this paper, a modified fixed boundary layer method is 

proposed for removing the chattering problems with 

providing the means of the increase of the tracking accuracy 

and steady performance.

In this paper, an ICIVSS with the prescribed control 

performance is presented for simple regulation controls of 

uncertain general linear systems. With the results in [19] of 

regulation controls to robot manipulators, this suggested 

algorithm is applied and extended to simple regulation 

controls of the uncertain general linear systems. In the 

proposed algorithm, the two main disadvantages of the VSS, 

ie. the reaching phase and chattering problems are 
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addressed to by means of the integral sliding surface with a 

special initial condition and modified fixed boundary layer 

method. The reaching phase is completely removed and the 

chattering is dramatically improved. The ideal sliding 

dynamics of the integral sliding surface is analytically 

obtained in advance after the state transformation. By using 

the solution of the ideal sliding dynamics, the output is 

predictable and predetermined. The norm of the error of 

tracking to the sliding surface is analyzed analytically as a 

specification on tracking to the integral sliding surface. 

Theoretically a discontinuous input with the exponential 

stability is proposed and practically by means of the 

modified fixed boundary layer method, a continuous input is 

suggested with providing the tool of the increase of the 

tracking accuracy to the integral sliding surface even better 

tracking accuracy than that of the discontinuous input. With 

the continuous input, the exponential stability is lost and 

the bounded stability is obtained but the tracking accuracy 

is even improved with the prescribed control performance. 

The proposed algorithm with the continuous input can 

provide the efficient means to increase the accuracy of 

tracking to the sliding surface and steady state performance. 

A design example and simulation study shows the usefulness 

of the main results.

2. An Continuous Integral Variable Structure Systems

2.1 Descriptions of plants

An n-th order uncertain general linear plant is described 

by

 ⋅⋅ 

(1)

where ⋅∈  is the original state, ⋅∈  is the 

control input, ∈   is the external disturbance, 

respectively,  and  is the nominal parameter matrices, 

  and  are the bounded matrix uncertainties and 

those satisfy the matching condition as follows

 ⊂
 ⊂
 ⊂

 (2)

Moreover the assumption on   is made.

Assumption

A1:It is assumed the following equation is satisfied for a 

non zero element coefficient vector ∈ × 


   ≤                       (3)

where  is a positive constant less than 1.

The assumption 1 means that the value of uncertainty 

  is less than the nominal value , which is acceptable 

in practical situations.

The purpose of the controller design is to control of the 

state of (1) to follow the predetermined intermediate sliding 

dynamics(trajectory) from a given initial state to the origin. 

By the state transformation,   , a weak canonical 

form[9] of (1) is obtained as

                   (4)

where









    
    
⋮ ⋮ ⋮  ⋮
  





and  







⋮








(5)

where   is the initial condition transformed from   

and   is the lumped uncertainty in the transformed 

system as

 ′′′ (6)

In (5),  is 1, then the system (4) is the standard 

canonical form, otherwise, then the (4) is the weak 

canonical one[9].

2.2 Design of Integral sliding Surfaces

To design the ICIVSS, the integral sliding surfaces [6, 15, 

16] are suggested to the following form having an integral 

of the state as

 ⋅










∞







⋅

⋅⋅

   (7)

   ⋅










∞







⋅

⋅⋅

     (8)

where the coefficient matrices and the initial conditions for 

the integral states are expressed as shown
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        ∈ ×   

       ∈ ×  (9)


∞



          (10a)

  
∞



         (10b)

The initial conditions (10a) and (10b) for the integral 

states in (7) and (8) are selected so that the integral sliding 

surfaces are zeros at    for removing the reaching phase 

[6, 16], which is stemmed from the idea in [15]. Without 

these initial conditions, the reaching phase still exists and 

the overshoot problem maybe exist because the integral 

state starting from the zero will be re-regulated to the zero 

[6, 8, 27]. From

 ⋅⋅         (11)

 the differential equation for  is obtained as

 ⋅     ⋅
⋅

        (12)

where

              (13)

Combining (12) with the first n-1 differential equations in 

the system (4) leads to the ideal sliding dynamics





 
            (14)

and




 
        (15)

where

 




×   × 






     (16)

which is considered as a dynamic representation of the 

integral sliding surfaces (7) or (8)[6]. The solutions of (14) 

and (15), 
 and 

 coincide with and predetermine the 

integral sliding surfaces (7) and (8)(the sliding trajectories) 

from a given initial condition to the origin [15]. By using 

the solutions of (14) and (15), the output is predetermined 

and predicted. To design the integral sliding surfaces (7) 

and (8), the system matrix  is to be stable or Hurwitz, 

that is all the eignvalues of  have the negative real parts. 

To choose the coefficient vectors of the integral sliding 

surfaces by means of the well known linear regulator 

theories, (14) and (15) are transformed to the each nominal 

system form of (1) and (4)

  


⋅




 
 

       (17)

where

             (18)

and expressed with the original state as

  



 


 
 

 
       (19)

where 

      (20)

After determining  or  to have the desired ideal 

sliding dynamics, the coefficient vectors of the integral 

sliding surfaces (7) or (8) can be directly chosen from the 

relationship

            
     

     


  (21)

  

which is derived from (18). If this regulation control 

problem is designed by using the nominal plants (17) or 

(19), then the integral sliding surface having exactly the 

same performance can be effectively chosen by using (21). 

If  is designed to be Hurwitz, then which guarantees the 

exponential stability of the system (14) and there exist the 

positive scalar constants  and  such that


≦ ⋅

        (22)

where ⋅ is the induced Euclidean norm as 




⋅
 .

Now, define  and   are the modified error  
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vector from the ideal sliding trajectory and its derivative, ie. 

the error vector, respectively as

       


 
       



    (23)

where

   





 

  
    

    (24)

If the integral sliding surface is the zero for all time, 

naturally this defined error and its derivative are also the 

zeros. The integral sliding surfaces may be not exactly zeros 

if the control input of the ICIVSS is continuously 

implemented. Hence the effect of the non-zero value of the 

integral sliding surface to the error to the sliding trajectory 

is analyzed in the following Theorem 1[19] as a prerequisite 

to the main theorem.

Theorem 1: If the integral sliding surfaces defined by 

equation (7) or (8) satisfy ≦  for any ≧  and 

≦  is satisfied at the initial time, then

 ≦ 
≦ 

          (25)

is satisfied for all ≧  where  and  are the positive 

constants defined as follows:   

  


⋅  ⋅




 ⋅

 

         (26)

Proof: The integral sliding surface can be re-written as 

   ⋅⋅⋅ ⋅
⋅

 ⋅
 

 ⋅
⋅



  (27)

and can be re-expressed in a differential matrix from as 

⋅








⋮







⋅         (28)

In (28), the integral sliding surface may be considered as 

the bounded disturbance input,  ≦ . The solution of 

(28) is expressed as 

  
⋅













⋅







⋮







⋅








 (29)

From the boundness of the sliding surface and (22), the 

Euclidean norm of the vector   become   

  

  
⋅
















⋅







⋮







⋅










≦⋅
⋅






⋅







⋮







⋅
≦


⋅  

 ⋅⋅

≦


⋅

 

        (30)

for all time, ≧  . From (28), the following equation is 

obtained

    ⋅
 







⋮







⋅
≦ 

          (31)

which completes the proof of Theorem 1.

The above Theorem 1 implies that the modified error 

vector and error vector from the ideal sliding trajectory are 

uniformly bounded, provided that the integral sliding surface 

is bounded for all time ≧  . Using this result of Theorem 

1, we can give the specifications on the norm of the error 

vector from the ideal sliding trajectory being dependent 

upon the value of the integral sliding surface, (7). In the 

next section, we will design the discontinuous and 

continuous variable structure regulation controllers which 

can guarantee the boundedness of s(t), i.e., ≦  for a 

given , then the error vector to the ideal sliding trajectory 

is bounded by  in virtue of Theorem 1. 

2.3 Transformed Discontinuous and Continuous Control 

Inputs

As the second design phase of the ICIVSS, a following 
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corresponding discontinuous transformed[49] control input 

to generate the perfect sliding mode on the every point of 

the pre-selected integral sliding surface from a given initial 

state to the origin is proposed as composing of the 

continuous terms and discontinuously switching terms as

 
⋅⋅


⋅

       (32)

where

         (33)

          (34)

∆ 








≥min∆
max∆∆

  

≤min∆
min∆∆

  

      

             (35)

 









≥min∆
max

  

≤min∆
min

  

      (36)

The ⋅  in the continuous feedback term can 

reinforce the controlled systems in more closer tracking to 

the pre-selected ideal integral sliding surface from a given 

initial condition to the origin[6][15][27] in order to 

increase the control accuracy and steady state performance. 

By this discontinuous control input, the real dynamics of  , 

i.e. the time derivative of   becomes   

 



 





  


 
 

  (37)

The closed loop stability and existence of the sliding 

mode on the preselected integral sliding surface by the 

proposed transformed discontinuous control input will be 

investigated in the next theorem.

Theorem 2: The proposed integral variable structure 

controller with the discontinuous input (32) and the integral 

sliding surface (7) can exhibit the exponential stability to 

the ideal sliding surface and the ideal output of the sliding 

dynamics for all the uncertainties exactly defined by the 

integral sliding surface (7).

Proof: Take a Lyapunov candidate function as 

  

          (38)

Differentiating (38) with time leads to

  ⋅      (39)

Substituting (37) into (39) and by (33)-(36), one can 

obtain the following equation

  ⋅  


 
    (40)

From (40), the following equation is obtained as

 ≦ 

 ≦


          (41)

which completes the proof.

As can be seen in (40) and (41), because  is included 

in the decay rate parameter, the larger , the closer 

tracking to the integral sliding surface. The ⋅  term 

can increase the control accuracy to the ideal sliding 

surface including the zero(origin) within the boundary layer 

and steady state performance. The exponential stability to 

the integral sliding surface and the existence condition of 

the sliding mode on the every point of the integral sliding 

surface is proved, while in the previous works on the VSS, 

only the asymptotic stability is guaranteed [1, 7, 8, 22, 47]. 

The sliding mode on the every point of the integral sliding 

surface from a given initial state to the origin is 

guaranteed. Hence the sliding output from a given initial 

state to the origin is insensitive to the matched 

uncertainties and external disturbances by the proposed 

discontinuous VSS input (32). By using the solution of the 

ideal sliding dynamics (15), the controlled output from a 

given initial state to the origin can be predicted and 

predetermined, as an attractive performance in the theoretic 

aspect, because the reaching phase is removed. The 

discontinuous input (32) can regulate the integral sliding 
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surface to be zero theoretically. However, the control input 

is discontinuous which results in the chattering problems 

[5, 26]. So for practical applications, the discontinuous input 

term is essentially approximated to be continuous. By using 

the modified boundary layer method, the discontinuous 

input (32) has changed to the following form

 
⋅⋅


⋅⋅

(42)

where   is defined as a modified boundary layer 

function proposed in this paper as follows:

 










 for  ≧ 
 for ≦   
 for   ≦ 

 for  ≦

         (43)

Because the switching terms in (42) are stable shown 

through Theorem 2, the   function can not 

influence on the closed loop stability and only can modify 

the magnitude of the switching terms within the boundary 

layer instead of the sign function when   is positive as 

well as negative. If    , then the   function 

is symmetric, otherwise it is asymmetric, which is suitable 

in case of unbalanced uncertainty and disturbance and 

unbalanced chattering inputs. 

Theorem 3: The proposed integral variable structure 

controller with the suggested continuous input (42) and the 

integral sliding surface (7) can exhibit the bounded stability 

for all the uncertainties and external disturbances.

Proof: Take a Lyapunov candidate function as 

  

       (44)

From the proof of Theorem 2, we can obtain the 

following equation

  ⋅  



     (45)

as long as ≧  max . From (45), the 

following equation is obtained as

   ≦ 

 ≦


          (46)

as long as ≧  , which completes the proof. 

As can be seen in (45) and (46), outside the boundary 

layer, the exponential stability is still guaranteed and inside 

the boundary layer the ⋅  term can increase the 

control accuracy and steady state performance. The larger 

, the closer tracking to the ideal sliding surface from a 

given initial condition to the origin. By Theorem 3, the 

continuously implemented control input (42) can guarantee 

that the integral sliding surface (7) is bounded by  . Hence 

it is possible to design that   is less than , that is  ≦ . 

Thus the integral sliding surface is bounded by  which 

satisfies the condition of Theorem 1. Then by Theorem 1, 

the fact that the norm of the error vector to the ideal 

sliding surface is bounded by  is possible as the 

prescribed control performance.

3. Design Examples and Simulation Studies

Consider a following plant with uncertainties and 

disturbances [9]

 


     (47)

where

 


 
 



  









 cos   sin
  cos

 ≤    ≤  ≤  .   (48)

The ICIVSS controller aims to drive the output of the 

plant (47) to the ideal sliding surface from any given initial 

state to the origin. The transformation matrix to a 

controllable weak canonical form and the resultant 

transformed system matrices are   




 


 

 
 



 


 

 
 







      (49)

By means of Ackermanns formula, the continuous static 

gain is obtained 

   and      (50)

so that the closed loop double eigenvalues of  are located 

at  . Hence, the  in (14) and (18) and  in (15) 
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and (20) become

 


  




 



 




       (51)

By using the solution (14) or (15), the regulated output 

from a given initial state to the origin can be predicted and 

predetermined. By the relationship (21), the coefficient 

matrices of the integral sliding surface directly becomes 

       

  

   Cx       (52)

        
   

,  (53)

As a result, the integral sliding surface becomes

  












     (54)

The constants  and  in the equation (22) are 

selected as   and    , hence the constants  

and  in (25) and (26) are determined as   and 

 . The specification on the norms of the error 

vector to the ideal sliding surface and the modified error 

vector,  and  are given as   and   for an 

example. Then the  is determined as   . The 

discontinuous input automatically and theoretically satisfy 

that the norm value of the integral sliding surface is 

bounded by   . For practical applications, the 

continuous input essentially adapted with little performance 

degradation as expected in the design stage. Therefore,   is 

determined less than   that is       . 

For the second design phase of the ICIVSS, the equation (3) 

in the Assumption A1 is calculated


 ≤         (55)

Thus the Assumption A1 is satisfied in this design. The 

 of (33) becomes

            (56)

The inequalities for the switching gains in discontinuous 

input terms, (34)-(36) become

  ,

 









 


  for   

 


 for   

 

 












  for   

 


  for   

        (57)

 


 

Finally the selected control gains ar

 

   for   
 for   

         (58)

     for   
 for   

 

The simulation is carried out using a Fortran software 

under 0.1[msec] sampling time and with      

initial condition. Fig. 1 shows the  control results of the 

designed ICIVSS by the proposed discontinuous control 

input (32) with the integral sliding surface (54) in the 

upper figure the two output responses,  and  for the 

three cases (i) the ideal sliding outputs that is the solution 

of (15), (ii) the outputs without the uncertainty and 

disturbance, and (iii) the outputs with the uncertainty and 

disturbance, in the middle figure, the discontinuous sliding 

surface with the uncertainty and disturbance, in the bottom 

figure the discontinuous control input with the uncertainty 

and disturbance. As can be seen in the upper figure, the 

three case outputs are almost equal, which means that  Fig. 

1 shows the strong and complete robustness against 

uncertainty and disturbance because of removing the 

reaching phase, prediction of the output by using the 

solution of (15), and predetermination of the output directly 

according to the pre-chosen of the integral sliding surface, 

as the attractive features in the theoretical point of view. 

As can be seen in the middle and bottom figures, the 

controlled system chatters and slides from    without the 

reaching phase. Since the integral sliding surface is 

naturally defined from any given initial condition to the 

origin, there is no need of consideration of the reaching 

mode. The value of the integral sliding surface is no more 

decreased as increase of the switching gains and  of the 

input because of the finite sampling frequency, discontinuous 
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그림 1 적분 술라이딩면 (54)와 제안된 불연속 제어입력 (32)에 

의한 설계된 ICIVSS의 제어결과

Fig. 1 Control results of the designed ICIVSS by the 

proposed discontinuous control input (32) with the 

integral sliding surface (54) in the upper figure the 

two output responses,   and   for the three cases 

(i) the ideal sliding outputs that is the solution of 

(15), (ii) the outputs without the uncertainty and 

disturbance, and (iii) the outputs with the 

uncertainty and disturbance, in the middle figure 

the discontinuous sliding surface with the 

uncertainty and disturbance, in the bottom figure 

the discontinuous control input with the uncertainty 

and disturbance

그림 2 적분 술라이딩면 (54)와 제안된 연속 제어입력 (42)에 의

한 설계된 ICIVSS의 제어결과

Fig. 2 Control results of the designed ICIVSS by the 

proposed continuous control input (42) with the 

integral sliding surface (54) in the upper figure the 

two output responses,   and   for the three cases 

(i) the ideal sliding outputs that is the solution of 

(15), (ii) the outputs without the uncertainty and 

disturbance, and (iii) the outputs with the 

uncertainty and disturbance, in the middle figure, 

the continuous sliding surface with the uncertainty 

and disturbance, in the bottom figure the continuous 

control input with the uncertainty and disturbance

chattering of the switching input, and digital implementation 

of the VSS. The integral sliding surface and the control 

input (32) is discontinuous because of the switching of the 

sign function in the control input (32), which is undesirable 

for practical applications. Therefore, the continuous 

approximation of the discontinuous input is essentially 

necessary. Based on the modified boundary layer function 

(43), the control input is continuously implemented as (42). 

The positive(negative) thickness of the boundary layer is 

not smaller than the positive(negative) maximum magnitude 

of the chattering of the integral sliding surface in the 

middle figure of Fig. 1. Thus the positive(negative) 

maximum magnitude of the chattering of the integral sliding 

surface must be smaller than  . If not, re-design with 

larger . Fig. 2 shows the control results of the designed 

ICIVSS by the proposed continuous control input (42) with 

the integral sliding surface (54) in the upper figure the two 

output responses,  and  for the three cases (i) the ideal 

sliding outputs that is the solution of (15), (ii) the outputs 

without the uncertainty and disturbance, and (iii) the 

outputs with the uncertainty and disturbance, in the middle 

figure, the continuous sliding surface with the uncertainty 

and disturbance, in the bottom figure the continuous control 

input with the uncertainty and disturbance. As can be seen 

in the upper figure, the three outputs are almost identical 

to each other by the continuous input with the better 

performance than that of the discontinuous input. The 

integral sliding surface is continuous, is bounded by    , 

and much smaller than that of the discontinuous input 

because of the large . The control input in the bottom 

figure is dramatically improved from the bottom figure of 

Fig. 1. There exists the tool to increase the tracking 

accuracy and steady state performance by means of increase 

of  gain. But, the increase over   makes the 

chattering and more increase does unstable in the closed 
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그림 3 적분 슬라이딩 면 추적 오차 벡터의 노옴 (i) 불연속 제

어입력 경우 (ii) 연속 제어입력 경우

Fig. 3 Norm of the tracking error vectors to the integral 

sliding surface (i) for the discontinuous input with 

uncertainty and disturbance and (ii) for the 

continuous input with uncertainty and disturbance.

loop system due to the high gain effect. Fig. 3 shows the 

norm  of the tracking error vectors to the integral sliding 

surface (i) for the discontinuous input with uncertainty and 

disturbance and (ii) for the continuous input with 

uncertainty and disturbance. Both the norms of the tracking 

error vectors to the integral sliding surface are smaller than 

′    , which means that the specification 

on the tracking error to the integral sliding surface is 

satisfied. The integrals of both the norms of the tracking 

error vectors to the integral sliding surface in Fig. 3 are 

 for the discontinuous case and  for 

the continuous case, which means that the tracking error of 

the continuous case is smaller than that of the 

discontinuous case but both the tracking errors are similar. 

By comparing the simulation figures of the discontinuous 

and continuous inputs, it is concluded that the performance 

of the continuous input is better than that of the 

discontinuous input in view of the accuracy of the integral 

sliding surface and the continuity and magnitude of the 

control input. While in the theoretical point of view, one 

can use the discontinuous input directly, in practical 

aspects, one can use the continuous input based on the 

modified boundary layer method proposed in this paper with 

the prescribed and better control performance.

4. Conclusions

In this paper, the simple regulation control of uncertain 

general linear systems is handled by means of a 

discontinuous and continuous improved integral variable 

structure systems with the prescribed control  performance. 

The general linear plant under consideration is transformed 

to the weak canonical system. To remove the reaching 

phase, an integral sliding surface with an integral state 

having a special initial condition is defined from a given 

initial state to the origin. The ideal sliding dynamics of the 

integral sliding surface is obtained analytically in the 

transformed and original systems. The solution of the ideal 

sliding dynamics coincides with the integral sliding surface 

from a given initial condition to the origin. Also by using 

the solution of the ideal sliding dynamics of the integral 

sliding surface, the controlled output can be predicted and 

predetermined in advance as an attractive property in the 

theoretical aspect. The design of the integral sliding surface 

can be done by the well known linear regulator feedback 

theories. The relationship between the norm of the error 

vector to the ideal integral sliding surface and the non-zero 

value of the sliding surface due to the continuous control 

input is analyzed and obtained analytically in Theorem 1, 

provided that the value of the integral sliding surface is 

bounded by  for all . In the theoretical aspect, a 

transformed discontinuous input with a feedback of the 

sliding surface itself is proposed to generate the sliding 

mode on the every point of the integral sliding surface 

from g given initial condition to the origin. The exponential 

stability to the integral sliding surface including the origin 

is investigated in Theorem 2. For the high potential of 

practical applications, the continuous modification of the 

discontinuous input is made based on the modified 

boundary layer method proposed in this paper. The bounded 

stability of the continuous input is studied in Theorem 3. 

Outside the boundary layer, the exponential stability is still 

guaranteed inside the boundary layer the ⋅  term 

increase the control accuracy and steady state performance. 

If one can design that   is smaller than , then it is 

possible that the value of the integral sliding surface is 

bounded by , and thus the norm of the error vector to 

the ideal sliding surface is bounded by  with the 

continuous input proposed in this paper as the prescribed 

control performance. The algorithm with the continuous 

input can provide the effective mean to increase the 

tracking accuracy to the sliding surface from a given initial 

state to the origin and the steady state performance by 

means of the increase of  . In fact, because of the large 

, the performance of the continuous input is better than 

that of the discontinuous input, while the performance of 
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the discontinuous input is no more improved as the 

increase of the control gains because of the finite sampling 

frequency, chattering of the input, and digital 

implementation of the VSS. The continuity of the input is 

dramatically improved based on the suggested modified 

boundary layer method. Through an illustrative example and 

simulation study, the effectiveness of the proposed main 

results is verified. In the theoretical point of view, one can 

use the discontinuous input for the attractive performance 

of output prediction and predetermination and exponential 

stability to the integral sliding surface including the origin, 

however in the aspect of practical applications, one can use 

the proposed continuous input with not the performance 

degradation but the better performance. If one can design 

that   is smaller than the resolution or equal to the 

resolution, then the bounded stability has the practical 

meaning.
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