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An Improved Continuous Integral Variable Structure Systems with Prescribed Control
Performance for Regulation Controls of Uncertain General Linear Systems
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Abstract -.In this paper, an improved continuous integral variable structure systems(ICIVSS) with the prescribed control
performance is designed for simple regulation controls of uncertain general linear systems. An integral sliding surface with an
integral state having a special initial condition is adopted for removing the reaching phase and predetermining the ideal
sliding trajectory from a given initial state to the origin in the state space. The ideal sliding dynamics of the integral sliding
surface is analytically obtained and the solution of the ideal sliding dynamics can predetermine the ideal sliding
trajectory(integral sliding surface) from the given initial state to the origin. Provided that the value of the integral sliding
surface is bounded by certain value by means of the continuous input, the norm of the state error to the ideal sliding
trajectory is analyzed and obtained in Theorem 1. A corresponding discontinuous control input with the exponential stability
is proposed to generate the perfect sliding mode on the every point of the pre-selected sliding surface. For practical
applications, the discontinuity of the VSS control input is approximated to be continuous based on the proposed modified
fixed boundary layer method. The bounded stability by the continuous input is investigated in Theorem 3. With combining
the results of Theorem 1 and Theorem 3, as the prescribed control performance, the pre specification on the error to the
ideal sliding trajectory is possible by means of the boundary layer continuous input with the integral sliding surface. The
suggested algorithm with the continuous input can provide the effective method to increase the control accuracy within the
boundary layer by means of the increase of the G gain. Through an illustrative design example and simulation study, the

usefulness of the main results is verified.
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1. Introduction

A great deal of the researches on the variable structure
systems(VSS) or sliding mode control(SMC) has been reported
in order to develop the theory of the VSS itself and to
extend the application fields of the VSS over last 60 years
[1-4]. The objective of the VSS has been greatly extended
in a variety control problem such as stabilization, regulation,
tracking including the model following, identification, and
even fault detection, etc. because of the robustness against
the matched uncertainty and disturbance in the sliding
mode [5, 6]. In regulation controls, the three fundamental
control problems are the simple regulation[7], set-point
regulation [8, 19], and point-to-point regulation problems
[9]. The simple regulation is so called the controllable
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problem that is the control of plants from a given initial
condition to the zero(origin) in the state space, which is the
most simple one among the three regulation problems. The
set-point regulation is so called the reachable problem that
is the control of plants from the zero(origin) to the
set-point. And the point-to-point regulation is the most
complex problem that is the control problem from any
given initial point to any given set-point. Among them, the
simple regulation problem of wuncertain general linear
systems is the theme of this paper.

The VSS with the SMC can provide the effective means
to the control of uncertain linear dynamical systems under
parameter variations and external disturbances [1-3]. One of
its essential advantages is the robustness of the controlled
system to matched parameter uncertainties and external
disturbances in the sliding mode on the predetermined
sliding surface [4-6]. However the VSS has the two main
demerits, those are the reaching phase [3] and chattering
problems [5]. The reaching phase is the transient period
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until the controlled system first reaches to the sliding
surface for the initial condition far from the sliding surface.
During the reaching phase, the sliding mode does not occur
so the robustness is not guaranteed [6]. The alleviation of
this problem is the use of the high-gain feedback to reduce
the effect of the disturbance [10]. This has the drawbacks
related to the high-gain feedback sensitive to the unmodeled
dynamics and actuator saturation. The adaptive change,
rotation, of the sliding surface to reduce the reaching
problems is proposed by Itkis in [3]. This method is
effectively improved by [11] for second order systems. But
the initial condition is limited to some degree in the phase
plane. As the similar approaches to Itkis's, the adaptive
changing methods, shifting and rotating of the sliding
surface, so called moving sliding surfaces are reported also
for second order systems in [12] and for n-th order
systems in [13] and [14]. The simple integral action without
a special initial condition is augmented to the VSS in order
to increase the steady state performance by [8] and [27].
But the reaching phase still exists and the overshoot
problem may occur because the integral state from the zero
must be re-regulated to the zero. So with the special initial
condition, the integral state is introduced to the VSS for the
first time in [15] and [6], which is applied to tracking
controls of motors in [16] and [17] and to simple
regulation controls of motors in [18]. The idea of [15] and
[6] is applied to set-point regulation controls of robot
manipulators in  [19], to simple regulation controls of
nonlinear systems in [20], and to point-to-point regulation
controls of uncertain general linear systems in [9]. The
reaching phase is completely removed by means of making
the integral sliding surface be zero at t=0 with a special
initial condition for the integral state in those papers. The
performance of the output prediction and predetermination
is obtained by using the solution of the ideal sliding
dynamics of the integral sliding surface. This ideal of the
integral sliding surface with the special initial condition in
[15] is adopted in this paper in order to remove the
reaching phase completely. A modification of [15] is studied
in [21] by Utkin and Shi. The similar results to [21] are
obtained in [22] and [23]. But, the algorithms of [21],
[22,], and [23] have the drawback of the need of the
information of the nominal input w, to construct the
nonlinear integral-type sliding surface. This demerit is
removed in [24] and [25] by means of introducing the
closed loop dynamics to the integrand in the nonlinear
integral-type sliding manifolds instead of using wu,. Other
version of the integral sliding surface is studied in [7] in
order to adopt the integral of the sliding surface itself to
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the conventional sliding surface. The reaching phase is also
removed.

On the other hand, the chattering in the VSS is the
discontinuously high frequency inherent switching of the
control input according to the sign of the sliding surface in
the neighborhood of the sliding surface, which is undesirable
for practical real plants, may excite the unmodeled high
frequency dynamics, reduces the usable life time of actuators,
and results in the loss of the asymptotic stability and poor
steady state tracking error[26]. Until now, there are many
approaches to attenuate the chattering problems, those are
the saturation function [17, 27, 28], boundary layer method
[29-31], observer-based approach [32, 33], higher-order
approach [34-36], adaptive method [37], fuzzy SMC [31,
38-40], neural net SMC [38, 41, 42], filtering technique[43],
digital sliding mode scheme[44], fast nonsingular terminal
sliding mode [45, 46], and uncertainty and disturbance
estimation technique[47], etc[48]. Each method has the
advantages and disadvantages at the same time. The first
two methods are in which the discontinuous switching
function, e.g. sign function in the control input is replaced
by continuous approximation functions. Among all the
alleviation methods mentioned above, the model-based
methods for example the observer-based and uncertainty
and disturbance estimation technique are sensitive the
mismatches of the parameters between those of models and
plants. In [29], the fixed boundary layer method is proposed
to alleviate the chattering problems. The variable boundary
layer is suggested to effectively cope with chattering
problems in [30]. By using the fuzzy control theory, the
thickness of the boundary layer is adjusted in [31]. There
are the need to compromise between the continuity of the
control input and tracking accuracy to the sliding surface
including the origin in most forementioned chattering
alleviation approaches. The feasible method to increase the
tracking accuracy and steady performance is necessary with
the implementation of the continuity of control inputs. In
this paper, a modified fixed boundary layer method is
proposed for removing the chattering problems with
providing the means of the increase of the tracking accuracy
and steady performance.

In this paper, an ICIVSS with the prescribed control
performance is presented for simple regulation controls of
uncertain general linear systems. With the results in [19] of
regulation controls to robot manipulators, this suggested
algorithm is applied and extended to simple regulation
controls of the uncertain general linear systems. In the
proposed algorithm, the two main disadvantages of the VSS,
ie. the reaching phase and chattering problems are



addressed to by means of the integral sliding surface with a
special initial condition and modified fixed boundary layer
method. The reaching phase is completely removed and the
chattering is dramatically improved. The ideal sliding
dynamics of the integral sliding surface is analytically
obtained in advance after the state transformation. By using
the solution of the ideal sliding dynamics, the output is
predictable and predetermined. The norm of the error of
tracking to the sliding surface is analyzed analytically as a
specification on tracking to the integral sliding surface.
Theoretically a discontinuous input with the exponential
stability is proposed and practically by means of the
modified fixed boundary layer method, a continuous input is
suggested with providing the tool of the increase of the
tracking accuracy to the integral sliding surface even better
tracking accuracy than that of the discontinuous input. With
the continuous input, the exponential stability is lost and
the bounded stability is obtained but the tracking accuracy
is even improved with the prescribed control performance.
The proposed algorithm with the continuous input can
provide the efficient means to increase the accuracy of
tracking to the sliding surface and steady state performance.
A design example and simulation study shows the usefulness
of the main results.

2. An Continuous Integral Variable Structure Systems
2.1 Descriptions of plants

An n-th order uncertain general linear plant is described
by

2= (4,+AA) - 2(t) +(B,+ AB) - u(t) +Df(t)  2(0)
@

where z( -+ )ER"™ is the original state, u( + )ER' is the
fER" is the
respectively, 4, and B, is the nominal parameter matrices,

AA, AB, and D are the bounded matrix uncertainties and
those satisfy the matching condition as follows

control  input, external  disturbance,

R(AA) C R(B,) ()
R(AB) C R(B,)
R(D) C R(B,)

Moreover the assumption on AB is made.

Assumption
Al:1t is assumed the following equation is satisfied for a
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non zero element coefficient vector C,,ER'"*"
lc,AB(C,B,) 1=1AIl<n<1 ®3)

where 7 is a positive constant less than 1.
The assumption 1 means that the value of uncertainty
AB is less than the nominal value B, which is acceptable

in practical situations.

The purpose of the controller design is to control of the
state of (1) to follow the predetermined intermediate sliding
dynamics(trajectory) from a given initial state to the origin.
By the state transformation, = =Fz, a weak canonical
form[9] of (1) is obtained as

r=Ax(t) +Tu(t) +1d#),  z(0) @
where

0 1 0 0 0

a=pap=| 0 01 ? |and r=rp, = 0

—a;, —a,—a3..—a, b

(5)

where z(0) is the initial condition transformed from z(0)
and d(t) is the lumped uncertainty in the transformed
system as

d(t) =AA' P 'a(t) + ABu(t)+ D f(t) ®)

In 5), b is 1, then the system (4) is the standard
canonical form, otherwise, then the (4) is the weak
canonical one[9].

2.2 Design of Integral sliding Surfaces

To design the ICIVSS, the integral sliding surfaces [6, 15,
16] are suggested to the following form having an integral
of the state as

¢ 0
szt)=0C, - [f zdt—l—/ zdt}—‘-Cz] -z (M
0 — 00
=Ch-2tC, -2

t 0
s(z,t)=0C, - / zdt+/ xdt
0 — 00

=Ch -zt Gy

+C ®

where the coefficient matrices and the initial conditions for
the integral states are expressed as shown
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1x
Czl = [Cl Cy Cn]ER 717 Cn = 1

C,B,=C,I, C,=CuP, C,=C,PER"™" (9

0
/ x,dt =— cixi(())/C%Oi7 1=1,2,...n (10a)

0
/ zidt =—c,,2;(0)/ Copy i=1,2,...,mn (10b)

— oo

The initial conditions (10a) and (10b) for the integral
states in (7) and (8) are selected so that the integral sliding
surfaces are zeros at t=0 for removing the reaching phase
[6, 16], which is stemmed from the idea in [15]. Without
these initial conditions, the reaching phase still exists and
the overshoot problem maybe exist because the integral
state starting from the zero will be re-regulated to the zero
[6, 8, 27]. From

s(zt)=Cy-x+C, - =0 1

the differential equation for z,, is obtained as

an(t) = CT,O : x—[O € Gy - cn*l] * T (12)
= Cx - x
where
Cx :[Cxl Cyo - cxn]: Cr0+[0 € Gy - Cn*l] (13>

Combining (12) with the first n-1 differential equations in
the system (4) leads to the ideal sliding dynamics

e=Az  2(0)=2(0) (14)
and

S=PAPS 2 (0)=2(0) (15)
where

O(n—1)><1 [<n—1)x(n—1)

A e

(16)

which is considered as a dynamic representation of the
integral sliding surfaces (7) or (8)[6]. The solutions of (14)
and (15), z, and z, coincide with and predetermine the
integral sliding surfaces (7) and (8)(the sliding trajectories)
from a given initial condition to the origin [15]. By using
the solutions of (14) and (15), the output is predetermined
and predicted. To design the integral sliding surfaces (7)
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and (8), the system matrix A, is to be stable or Hurwitz,
that is all the eignvalues of A, have the negative real parts.

To choose the coefficient vectors of the integral sliding
surfaces by means of the well known linear regulator
theories, (14) and (15) are transformed to the each nominal
system form of (1) and (4)

r=A-z.+Tu,(z,t)

U (a::,t) = G’iL’: () am
where
A, =A-TG (18)

and expressed with the original state as

2= Ayz. + By, (z.,t)

uﬁ(z;t) = G’Pz:(t) = Kzz(t) (19
where
P 'AP=A,— BK (20)

After determining K or G to have the desired ideal
sliding dynamics, the coefficient vectors of the integral
sliding surfaces (7) or (8) can be directly chosen from the

relationship
CT, :[le Cpa - C.T'n,]: CTO+[0 € Cy - Cn*l] (21)
=la, ay ... a,]+bG
=[a, ay ... a,]+bKP"
Ce1 = C:I'Ol

which is derived from (18). If this regulation control
problem is designed by using the nominal plants (17) or
(19), then the integral sliding surface having exactly the
same performance can be effectively chosen by using (21).
If A, is designed to be Hurwitz, then which guarantees the
exponential stability of the system (14) and there exist the
positive scalar constants A; and « such that

le™ll < & - e 22)
where |l-| is the induced Euclidean norm as
T
tmce(e/lct . eA"t).

Now, define E(t) and F;(t) are the modified error



vector from the ideal sliding trajectory and its derivative, ie.
the error vector, respectively as

E(t)=le, e, ey e, )" (23)
E(t)=E(t)=le, ey e5 - ¢,]”
where
t *
eo(t):/ x, —x,dt+e,(0) (24)
0
e,-(t) =, _$:i7 1=1,2,...,n

If the integral sliding surface is the zero for all time,
naturally this defined error and its derivative are also the
zeros. The integral sliding surfaces may be not exactly zeros
if the control input of the ICIVSS is continuously
implemented. Hence the effect of the non-zero value of the
integral sliding surface to the error to the sliding trajectory
is analyzed in the following Theorem 1[19] as a prerequisite
to the main theorem.

Theorem 1: If the integral sliding surfaces defined by
equation (7) or (8) satisty |s(t)| <~ for any t=0 and

1B (0l = v/ is satistied at the initial time, then

@(t)\\ <e¢ (25)

1s satistied for all t =0 where €, and e, are the positive

constants defined as follows:

K
Q=7 &=7°
K

LA - i(] 26)
K

Proof: The integral sliding surface can be re-written as

s(z,t)=C,y - 2g+C,, * x—{CzU sz, + O, - x:} @
= Cz() . [iﬂ_x;a]+£tl ° [.T_LE:]
=Cy B[yt Cy - K

and can be re-expressed in a differential matrix from as

0

E=A. - E+ 6 - s(x,t) (28)
1

In (28), the integral sliding surface may be considered as
the bounded disturbance input, lls(¢)l < ~. The solution of
(28) is expressed as
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0
_ _ t .
Eb(t):e/l‘t . EZ)(O)-I—/ eA"t . 0 « s(zt—1) pdr (29)
0
1

From the boundness of the sliding surface and (22), the

Euclidean norm of the vector EU become

N
— — t :
B =1 - B+ [ e - || - staa—r)fldr
0
1’,
0
— t :
< Ky e B+ [0 |1 st —lar
0
1
5 = v
< . [ . e nt
< (B2 ke
<M (30)
=
—

for all time, t = 0. From (28), the following equation is

obtained
0
IEl=1l4 - IZ]+I (’) [« lls (z,t)ll (31)
1
=€

which completes the proof of Theorem 1.

The above Theorem 1 implies that the modified error
vector and error vector from the ideal sliding trajectory are
uniformly bounded, provided that the integral sliding surface
is bounded for all time ¢ = 0. Using this result of Theorem
1, we can give the specifications on the norm of the error
vector from the ideal sliding trajectory being dependent
upon the value of the integral sliding surface, (7). In the
next section, we will design the discontinuous and
continuous variable structure regulation controllers which
can guarantee the boundedness of s(t), ie., lls(t)ll <~ for a
given =, then the error vector to the ideal sliding trajectory
is bounded by €, in virtue of Theorem 1.

2.3 Transformed Discontinuous and Continuous Control
Inputs

As the second design phase of the ICIVSS, a following
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corresponding discontinuous transformed[49] control input
to generate the perfect sliding mode on the every point of
the pre-selected integral sliding surface from a given initial
state to the origin is proposed as composing of the
continuous terms and discontinuously switching terms as

u(t) =—(C,B) MK, - 2+ G - s} (32)
*(C~1Bo)71{AK; - 2+ Gysign(s)}

z

where
K =C,+C, A, .
G- (34)
maX{CzlAA*A[K;}
i L sign(sz,) >0
Ak = min{/+ AL, i
i min{CﬂAAfA[Kz}i
min{/+ AT, sign(sz;) <0
1= 172,...771 (35)
Q= Tmin{i+ AL sign(s) >0 "
27 _ min{C.Df (1)}
< —— 7 sign(s) <0

min{/+ AL}

The G -s in the continuous feedback term can

reinforce the controlled systems in more closer tracking to
the pre-selected ideal integral sliding surface from a given
initial condition to the origin[6][15][27] in order to
increase the control accuracy and steady state performance.
By this discontinuous control input, the real dynamics of s,
ie. the time derivative of s becomes

s(z,t) = Coz+ Czlé (37
=Cpz+C, (4 +A4)z
+C, (B, + AB)u+ C,Df(t)

=(Cy+C, 4))2+C AA
—C,(B,+AB)(C,B) (K=
+Gs+AKz+ Gysign(s)) + C Df(t)

=(Cy+C, 4))2— K2+ C,AA2— AIK 2
—(I+ADAKz— (I+ A Gys
+ C,\Df(t) — (I+ Al Gysign(s)

= C AAz— AIK z— (I+ ADAKz
—(I+ADGs + C,Df(t) — (I+ AD) Gysign(s)

The closed loop stability and existence of the sliding
mode on the preselected integral sliding surface by the
proposed transformed discontinuous control input will be
investigated in the next theorem.
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Theorem 2: The proposed integral variable structure
controller with the discontinuous input (32) and the integral
sliding surface (7) can exhibit the exponential stability to
the ideal sliding surface and the ideal output of the sliding
dynamics for all the uncertainties exactly defined by the
integral sliding surface (7).

Proof: Take a Lyapunov candidate function as

Wt) = % $2(2,8) (38)

Differentiating (38) with time leads to

i/(t) =s(z,t) - s(z,t) (39)

Substituting (37) into (39) and by (33)-(36), one can
obtain the following equation

V(t) =s(zt) - s(zt) < —(1—n) Gs%(z,t) (40)
= —2(1-n)G V(t)

From (40), the following equation is obtained as

V) +2(1—n) G (t) <0 "
V(t) = V(0)e 20 mat

which completes the proof.

As can be seen in (40) and (41), because G is included
in the decay rate parameter, the larger &), the closer
tracking to the integral sliding surface. The G, - s term
can increase the control accuracy to the ideal sliding
surface including the zero(origin) within the boundary layer
and steady state performance. The exponential stability to
the integral sliding surface and the existence condition of
the sliding mode on the every point of the integral sliding
surface is proved, while in the previous works on the VSS,
only the asymptotic stability is guaranteed [1, 7, 8, 22, 47].
The sliding mode on the every point of the integral sliding
surface from a given initial state to the origin is
guaranteed. Hence the sliding output from a given initial
state to the origin is insensitive to the matched
uncertainties and external disturbances by the proposed
discontinuous VSS input (32). By using the solution of the
ideal sliding dynamics (15), the controlled output from a
given initial state to the origin can be predicted and
predetermined, as an attractive performance in the theoretic
aspect, because the reaching phase is removed. The
discontinuous input (32) can regulate the integral sliding



surface to be zero theoretically. However, the control input
is discontinuous which results in the chattering problems
[5, 26]. So for practical applications, the discontinuous input
term is essentially approximated to be continuous. By using
the modified boundary layer method, the discontinuous
input (32) has changed to the following form

u (t) =—(C,B) K, - 2+G, - s} (42)
—(C,B) " HAK, - z+ Gysign(s)} - MBLF(s)

where MBLF(s) is defined as a modified boundary layer
function proposed in this paper as follows:

1 for s=1,

s/l for 0=s<lI,
Vsl for —1.<s=0

1 for s<—1_

MBLF(s) (43)

Because the switching terms in (42) are stable shown
through Theorem 2, the MBLF(s) function can not
influence on the closed loop stability and only can modify
the magnitude of the switching terms within the boundary
layer instead of the sign function when s is positive as
well as negative. It [, =I_, then the MBLF(s) function
is symmetric, otherwise it is asymmetric, which is suitable
in case of unbalanced uncertainty and disturbance and
unbalanced chattering inputs.

Theorem 3: The proposed integral variable structure
controller with the suggested continuous input (42) and the

integral sliding surface (7) can exhibit the bounded stability
for all the uncertainties and external disturbances.

Proof: Take a Lyapunov candidate function as
1,
Vit) = 58 (2,t) (44)

From the proof of Theorem 2, we can obtain the
following equation

V(t) =s(zt) - s(zt) < —(1—n) Gis*(z,t) (45)
=—2(1—n) G V(1)

as long as Is(zt)|=1=max(l,,l_). From 45), the

following equation is obtained as

Wt)+2(1—n)G V() <0 (46)
V(t) < v(o)e 27
23y gut My Alaglel 2 ZolM HolE Bt ALK HMol M5 e 7

Trans. KIEE. Vol. 66, No. 12, DEC, 2017

as long as |s(z,t)| = I, which completes the proof.

As can be seen in (45) and (46), outside the boundary
layer, the exponential stability is still guaranteed and inside
the boundary layer the G- s term can increase the
control accuracy and steady state performance. The larger
Gy, the closer tracking to the ideal sliding surface from a
given initial condition to the origin. By Theorem 3, the
continuously implemented control input (42) can guarantee
that the integral sliding surface (7) is bounded by I. Hence
it is possible to design that [ is less than +, that is [ < ~.
Thus the integral sliding surface is bounded by ~ which
satisfies the condition of Theorem 1. Then by Theorem 1,
the fact that the norm of the error vector to the ideal
sliding surface is bounded by €, is possible as the

prescribed control performance.

3. Design Examples and Simulation Studies

Consider a following plant with uncertainties and
disturbances [9]

2= (— 2+ Aay) 2, () + (24 Ab u(t) + £(2) “n
22: Aa,z () — 3z, (t) + (2+Abz)u(t) f@)

-2 0 2
Ao:[o _3]7 B():[Q}

Aa, =0.15c0s(7t), Ab, = Ab, =0.3sin (5t)
f(t) =0.5c0s(8t)
|Aa,l < 0.15, 1Ab|=14b] < 0.3, [f(t)I < 0.5. 48)

The ICIVSS controller aims to drive the output of the
plant (47) to the ideal sliding surface from any given initial
state to the origin. The transformation matrix to a
controllable weak canonical form and the resultant
transformed system matrices are

P= [f2 ’3]7 A:[f%fé} r= [g] 49)

By means of Ackermanns formula, the continuous static
gain is obtained

K=[05 0] and G=[1.5 0.5] (50

so that the closed loop double eigenvalues of A, are located

at —3. Hence, the A, in (14) and (18) and P~'AP in (15)
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and (20) become

_ |0 1
1.=[ g

By using the solution (14) or (15), the regulated output

- (51)

SEK

from a given initial state to the origin can be predicted and
predetermined. By the relationship (21), the coefficient
matrices of the integral sliding surface directly becomes

C.=lo;, a,)+bG=1[6 5]+2[1.5 0.5]

=9 6
C,~=0b 0], C, =6 1] (52)
Coy=CoP=[9 -9, C,=C,P=4 3] (53)
C,B,=C,I'=2

As a result, the integral sliding surface becomes

s(z,t) =9{/t21d74/921(0)} (54)
0
_9{/t22d7'—3/922(0)}+4z1—3z2

0

The constants A; and & in the equation (22) are
selected as K| =3.8 and ~=1.0, hence the constants ¢,
and €, in (25 and (26) are determined as ¢ =3.8v and
€, =42.28y. The specification on the norms of the error
vector to the ideal sliding surface and the modified error
vector, €, and €, are given as €, =5 and ¢ =0.45 for an

example. Then the ~ is determined as ~y=0.1184. The
discontinuous input automatically and theoretically satisfy
that the norm value of the integral sliding surface is
bounded by ~y=0.1184. For practical applications, the
continuous input essentially adapted with little performance
degradation as expected in the design stage. Therefore, [ is
determined less than =0.1184 that is [=[, =1_=0.1.
For the second design phase of the ICIVSS, the equation (3)
in the Assumption Al is calculated

(C,B,)'C,AB=AI<0.15 (55)

Thus the Assumption Al is satisfied in this design. The
K, of (33) becomes

K =C,+C,4,= 0 (56)

The inequalities for the switching gains in discontinuous
input terms, (34)-(36) become
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G >0
@=0.3529 for (sz;) >0
- 0.85
ki 0.30
> 12 1.412 for (sz,) >0
o 0.85
k.o 1.9 (57
< -——= <
g5~ 412 for (s25) <0
0.5
> —
G, 085 0.5882
Finally the selected control gains ar
=300 (58)
_ for (sz,) >0
B 20 5 for (sz,) <0
{285 for (sz,) >0
n 28 5 for (sz2) <0

The simulation is carried out using a Fortran software

under 0.1[msec] sampling time and with z(0)=[3 —1.5]7
initial condition. Fig. 1 shows the control results of the
designed ICIVSS by the proposed discontinuous control
input (32) with the integral sliding surface (54) in the
upper figure the two output responses, z;, and z, for the

three cases (i) the ideal sliding outputs that is the solution
of (15),
disturbance, and (iii) the outputs with the uncertainty and

(i) the outputs without the uncertainty and

disturbance, in the middle figure, the discontinuous sliding
surface with the uncertainty and disturbance, in the bottom
figure the discontinuous control input with the uncertainty
and disturbance. As can be seen in the upper figure, the
three case outputs are almost equal, which means that Fig.
1 shows the strong and complete robustness against
uncertainty and disturbance because of removing the
reaching phase, prediction of the output by using the
solution of (15), and predetermination of the output directly
according to the pre-chosen of the integral sliding surface,
as the attractive features in the theoretical point of view.
As can be seen in the middle and bottom figures, the
controlled system chatters and slides from ¢ =0 without the
reaching phase. Since the integral sliding surface is
naturally defined from any given initial condition to the
origin, there is no need of consideration of the reaching
mode. The value of the integral sliding surface is no more
decreased as increase of the switching gains and G of the

input because of the finite sampling frequency, discontinuous



chattering of the switching input, and digital implementation
of the VSS. The integral sliding surface and the control
input (32) is discontinuous because of the switching of the
sign function in the control input (32), which is undesirable
Therefore, the
approximation of the discontinuous input is essentially

for practical applications. continuous
necessary. Based on the modified boundary layer function
(43), the control input is continuously implemented as (42).
The positive(negative) thickness of the boundary layer is
not smaller than the positive(negative) maximum magnitude
of the chattering of the integral sliding surface in the
middle figure of Fig. 1. Thus the positive(negative)
maximum magnitude of the chattering of the integral sliding

surface must be smaller than I, (I_). If not, re-design with
larger e€,. Fig. 2 shows the control results of the designed

ICIVSS by the proposed continuous control input (42) with
the integral sliding surface (54) in the upper figure the two
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Fig. 1 Control results of the designed ICIVSS by the
proposed discontinuous control input (32) with the
integral sliding surface (54) in the upper figure the
two output responses, z; and z, for the three cases
(i) the ideal sliding outputs that is the solution of
(15), (i) the outputs without the uncertainty and
disturbance, and (i) the outputs with the
uncertainty and disturbance, in the middle figure
the  discontinuous
uncertainty and disturbance, in the bottom figure

sliding surface with the

the discontinuous control input with the uncertainty
and disturbance

Trans. KIEE. Vol. 66, No. 12, DEC, 2017

output responses, z; and z, for the three cases (i) the ideal
sliding outputs that is the solution of (15), (ii) the outputs
without the uncertainty and disturbance, and (i) the
outputs with the uncertainty and disturbance, in the middle
figure, the continuous sliding surface with the uncertainty
and disturbance, in the bottom figure the continuous control
input with the uncertainty and disturbance. As can be seen
in the upper figure, the three outputs are almost identical
to each other by the continuous input with the better
performance than that of the discontinuous input. The
integral sliding surface is continuous, is bounded by [=0.1,
and much smaller than that of the discontinuous input
because of the large ). The control input in the bottom

figure is dramatically improved from the bottom figure of
Fig. 1. There exists the tool to increase the tracking
accuracy and steady state performance by means of increase
of G) gain. But, the increase over G; =16930.0 makes the

chattering and more increase does unstable in the closed
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Fig. 2 Control results of the designed ICIVSS by the
proposed continuous control input (42) with the
integral sliding surface (54) in the upper figure the
two output responses, z, and z, for the three cases
() the ideal sliding outputs that is the solution of
(15), (i) the outputs without the uncertainty and
disturbance, and (iii) the outputs with the

uncertainty and disturbance, in the middle figure,

the continuous sliding surface with the uncertainty
and disturbance, in the bottom figure the continuous
control input with the uncertainty and disturbance
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Fig. 3 Norm of the tracking error vectors to the integral
sliding surface (i) for the discontinuous input with
uncertainty and disturbance and (i) for the
continuous input with uncertainty and disturbance.

loop system due to the high gain effect. Fig. 3 shows the
norm of the tracking error vectors to the integral sliding
surface (i) for the discontinuous input with uncertainty and
disturbance and (i) for the continuous input with
uncertainty and disturbance. Both the norms of the tracking
error vectors to the integral sliding surface are smaller than
e, =P Yle, =19.3640, which means that the specification
on the ftracking error to the integral sliding surface is
satisfied. The integrals of both the norms of the tracking
error vectors to the integral sliding surface in Fig. 3 are
0.1129883 for the discontinuous case and 0.1129564 for
the continuous case, which means that the tracking error of
the continuous case is smaller than that of the
discontinuous case but both the tracking errors are similar.
By comparing the simulation figures of the discontinuous
and continuous inputs, it is concluded that the performance
of the continuous input is better than that of the
discontinuous input in view of the accuracy of the integral
sliding surface and the continuity and magnitude of the
control input. While in the theoretical point of view, one
can use the discontinuous input directly, in practical
aspects, one can use the continuous input based on the
modified boundary layer method proposed in this paper with
the prescribed and better control performance.

4. Conclusions

In this paper, the simple regulation control of uncertain
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general linear systems is handled by means of a
discontinuous and continuous improved integral variable
structure systems with the prescribed control performance.
The general linear plant under consideration is transformed
to the weak canonical system. To remove the reaching
phase, an integral sliding surface with an integral state
having a special initial condition is defined from a given
initial state to the origin. The ideal sliding dynamics of the
integral sliding surface is obtained analytically in the
transformed and original systems. The solution of the ideal
sliding dynamics coincides with the integral sliding surface
from a given initial condition to the origin. Also by using
the solution of the ideal sliding dynamics of the integral
sliding surface, the controlled output can be predicted and
predetermined in advance as an attractive property in the
theoretical aspect. The design of the integral sliding surface
can be done by the well known linear regulator feedback
theories. The relationship between the norm of the error
vector to the ideal integral sliding surface and the non-zero
value of the sliding surface due to the continuous control
input is analyzed and obtained analytically in Theorem 1,
provided that the value of the integral sliding surface is
bounded by ~ for all t. In the theoretical aspect, a
transformed discontinuous input with a feedback of the
sliding surface itself is proposed to generate the sliding
mode on the every point of the integral sliding surface
from g given initial condition to the origin. The exponential
stability to the integral sliding surface including the origin
is investigated in Theorem 2. For the high potential of
practical applications, the continuous modification of the
discontinuous input is made based on the modified
boundary layer method proposed in this paper. The bounded
stability of the continuous input is studied in Theorem 3.
Outside the boundary layer, the exponential stability is still
guaranteed inside the boundary layer the G- s term
increase the control accuracy and steady state performance.
If one can design that [ is smaller than -+, then it is
possible that the value of the integral sliding surface is
bounded by <, and thus the norm of the error vector to
the ideal sliding surface is bounded by e, with the
continuous input proposed in this paper as the prescribed
control performance. The algorithm with the continuous
input can provide the effective mean to increase the
tracking accuracy to the sliding surface from a given initial
state to the origin and the steady state performance by
means of the increase of Gj. In fact, because of the large

Gy, the performance of the continuous input is better than

that of the discontinuous input, while the performance of



the discontinuous input is no more improved as the
increase of the control gains because of the finite sampling
the and  digital
implementation of the VSS. The continuity of the input is
improved based on the suggested modified

boundary layer method. Through an illustrative example and

frequency, chattering  of input,

dramatically

simulation study, the effectiveness of the proposed main
results is verified. In the theoretical point of view, one can
use the discontinuous input for the attractive performance
of output prediction and predetermination and exponential
stability to the integral sliding surface including the origin,
however in the aspect of practical applications, one can use
the proposed continuous input with not the performance
degradation but the better performance. If one can design
that [
resolution, then the bounded stability has the practical

is smaller than the resolution or equal to the

meaning.
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