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Abstract  -  In this paper, an alternative variable structure controller is designed for the point-to-point regulation control 

of uncertain general linear plants so that the output of plants can be controlled from an arbitrarily given initial point to 

an arbitrarily given reference point in the state space. By using the error between the steady state value of the output 

and an arbitrarily given reference point and those integral, a transformed integral sliding surface is defined, in advance, 

as the surface from an initial state to an arbitrarily given reference point without the reaching phase problems. A 

corresponding control input is suggested to satisfy the existence condition of the sliding mode on the preselected 

transformed integral sliding surface against matched uncertainties and disturbances. Therefore, the output controlled by 

the proposed controller is completely robust and identical to that of the preselected transformed integral sliding surface. 

Through an example, the effectiveness of the suggested controller is verified. 
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1. Introductions 

  The theory of the variable structure system (VSS) or 

sliding mode control (SMC) can provide the effective 

means to the problem of controlling uncertain dynamical 

systems under parameter variations and external 

disturbances[1-5,23]. One of its essential advantages is 

the invariance of the controlled system to the variations 

of parameters and disturbances in the sliding mode on 

the predetermined sliding surface, s(t)=0. The proper 

design of the sliding surface can determine the almost 

output dynamics and its performances. Many design 

algorithms including the linear(optimal control[6][7], 

eigenstructure assignment[8][9], geometric approach[10], 

differential geometric approach[11], Lyapunov 

approach[29]) and nonlinear[12][22] techniques are 

reported. Moreover, an integral action have been 

augmented by the two groups[7][13]-[15]. One is to 

improve the steady state performance[7][13][14] against 

the external disturbances possibly in the digital 

implementation of the VSS, and the other aims to reduce 

the chattering problems by means of filtering the 

discontinuous input through the integral action[15].

Unfortunately, most of these existing VSS's have the 

reaching phase and are applied to canonical plants. 

During the reaching phase, the controlled systems may be 

sensitive to the parameter variations and disturbances 

because the sliding mode can not be realized[18]. And it 

is difficult to find the designed performance from the real 

output, that is, the output is not predictable in the design 

stage. Moreover, introducing the integral to the VSS 

without removing the reaching phase can inevitably cause 

the overshoot problems.

  One alleviation method for the reaching phase problems 

is the use of the high-gain feedback[1]. This has the 

drawbacks related to the high-gain feedback, for example, 

the sensitivity to the unmodelled dynamics and actuator 

saturation[18]. An adaptive rotating or shifting of the 

sliding surface is suggested to reduce the reaching phase 

problems in [2] and [20], and the segmented sliding 

surface connected from a given initial condition to the 

origin is also suggested in [21]. But these changing 

techniques and segmented sliding surfaces are applicable 

to only second order systems and those outputs are not 

predictable. In [22] and [23], the exponential term is 

added to the conventional linear sliding surface in order 

to make the sliding surface be zero at t=0. But, its 

resultant sliding dynamics becomes nonlinear. In [30], 

Park attempted to remove the reaching phase problems 
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for general uncertain systems. However, the developed 

algorithms for regulation problems use a complex sliding 

surface including the control input term and need 

mathematical accuracy in the formulation of the algorithm. 

Utkin suggested the two transformation(diagonalization) 

methods, i.e., transformation(diagonalization) of the sliding 

surface and transformation(diagonalization) of the control 

input  through the invariant theorem in [1] and that 

theorem is proved for multi input linear systems in [39]. 

Using transformation(diagonalization) of the control input, 

a new integral variable structure controller(IVSC) without 

the reaching phase problems is suggested for the 

point-to-point regulation control[32] of uncertain general 

linear systems to an any given point with 

predetermination/prediction of output response in [38]. 

  In this paper, as an alternative approach of [38], using 

the transformation(diagonalization) of the sliding surface, 

a modified integral variable structure controller(MIVSC) 

without the reaching phase problems is suggested for the 

point-to-point regulation control of uncertain general linear 

systems to an any given reference point with the same 

performance of [38]. A used integral sliding surface is 

transformed by means of the transformation(diagonalization) 

of the sliding surface in the invariant theorem of Utkin. 

The reaching phase is completely removed by only 

introducing an integral action of the state error with a 

special non-zero initial value to the conventional sliding 

surface. After obtaining the dynamic representation of the 

integral sliding surface, those coefficients are designed by 

the point-to-point regulation controller design. A 

corresponding control input is proposed to completely 

guarantee the designed output in the sliding surface from 

any initial condition to a given desired reference point for 

all the parameter variations and disturbances. The 

stability of the suggested algorithm together with the 

existence condition of the sliding mode is investigated in 

Theorem 1. Finally, an example is presented to show the 

effectiveness of the algorithm.

2. Alternative Variable Structure Systems

2.1 Description of  plants

  An n-th order uncertain non-canonical general linear 

system is described by

       

                       (1)

where ∙∈  is the original state, ∙∈  is the 
control input, ∈  is the external disturbance,  

  and  are the bounded system matrix 

uncertainty, the bounded input matrix uncertainty, and the 

disturbance matrix, and those satisfy the matching 

condition:

⊂  

⊂  

⊂                               (2)

Assumption 

A1:It is assumed that the following equation is satisfied 

for a non zero element coefficient vector ∈×


   ≤             (3)

where   is a positive constant less than  , which menas 

that the amount of the uncertainty ∆  is less than that 

of the nominal value  . Because of that, the assumption 

A1 is practical. The purpose of the controller design is to 

control the output(state) of a plant (1) to track the 

predetermined intermediate dynamics from an arbitrarily 

given initial point finally to any arbitrary reference value 

       for all the uncertainties and disturbances 

by using the integral sliding mode control. Generally, this 

type point-to-point regulation control is following a non 

zero reference command from an arbitrarily given initial 

point[32]. By state transformation,    a weak 

canonical form of (1) is obtained as,  

                       (4)

 

where

     





   ⋯ 
   ⋯ 
⋮ ⋮ ⋮ ⋯ ⋮
   ⋯  





 and    





⋮






     (5)

where    is the initial condition transformed from    

and   is the lumped uncertainty in the transformed 

system as

 ′ ′′ .            (6)

In (5), if   , it is the standard canonical form, 

otherwise, it is called as a weak canonical form. Hence it 

is more general in view of the degree of freedom in the 

MIVSC design and the approach in this note can be an 

extension of [38].

2.2 Design of  Transformed Integral  Sliding Surfaces

  To design the MIVSC, a transformed integral sliding 

surface in error coordinate system is suggested to the 

following form having an integral of the state errors as

  
 










 
∞



 






   

  (7)

  
 










 
∞



 






   

   (8) 
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where the coefficient matrices and the initial conditions 

for the integral states are expressed as shown

    ⋯  ∈×         

      ∈×     (9)


∞



       ,


∞



       (10)

The initial conditions (10) for the integral states in (7) 

and (8) are selected so that transformed integral sliding 

surfaces are zeros at     for removing the reaching 

phase from the beginning. From     , (4), (7), and 

the invariant theorem of Utkin[1][39], the differential 

equation for   is obtained as

       ⋯   


 (11)

where

    ⋯      ⋯             (12)

Finally combing (11) with the first n-1 differential 

equation in the systems (4) leads to the ideal sliding 

dynamics:  

                (13)

and

 
  

          (14) 

where

 





  ×    ×   






            (15)

which can be considered as a dynamic representation of 

the transformed integral sliding surface (7) or (8). 

Because of the reference command in the system (13), 

the design problems becomes the point-to-point regulation 

controller design also[32]. In order to apply the 

well-studied linear regulator theories to choosing the 

coefficient matrices of the transformed integral sliding 

surfaces, (13) and (14) are transformed to the nominal 

system from of (1)

             

                       (16) 

where

         (17) 

and expressed with the original state as   

            

            (18)

where

           (19)

When one determines the continuous gain, the condition 

on the gain should be satisfied to be    in the steady 

state

 and            (20) 

After determining   or   to have a desired ideal sliding 

dynamics, the coefficient matrix of the new surface (7) or 

(8) can be directly determined from the relationship:

    ⋯ 
   ⋯  
   ⋯  

 

.              (21)

                                          (22) 

which is derived from (17) and (20). If the point-to-point 

regulation control using the nominal plant (16) or (18) is 

designed, then the sliding surface having exactly the 

same output performance can be effectively chosen using 

(21) or (22). As a consequence, the output of (16) or (18) 

becomes the state set of the chosen sliding surface, called 

as the ideal sliding output meaning the nominal output 

design in the sliding surface or the desired performance 

design. 

2.3 Corresponding Control Input and Stability Analysis

  Now, as the second design phase of the MIVSC, a 

following corresponding control input to generate the 

sliding mode on the pre-selected transformed integral 

sliding surface is proposed as composing of the 

continuous and switching terms

 
     


  



 
  



 

     (23)

with the gains satisfying the inequalities:  

 min
max  

 









 min  
max   for   

  min  
min    for   

  min
max  

     (24)

The continuous term in (23) is directly determined 

according to choosing the transformed integral sliding 

surface. Only the switching gains are the design 

parameters for the robustness problems. As a result, the 

controller design is separated into the performance design 

and robustness design. Because of the feasibility of the 

control, the necessary constraint is imposed by the 

Assumption A1 on the uncertain bound of   with 

respect to the coefficient   and the nominal input 

matrix  .  By means of the derived algorithm until now, 

the obtainable performance including the stability of the 

closed loop systems can be stated in next theorem.

Theorem 1: The proposed feasible variable structure 

controller with the input (23) and the modified sliding 

surface (8) can exhibit the asymptotic stability and the 
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ideal output of the sliding mode dynamics for all the 

uncertainties exactly defined by the modified sliding 

surface (8).  

Proof: Take a Lyapunov candidate function as 

  

   (25)

Differentiating (25) with time leads to 

 ⋅                      (26)

Now, the real dynamics of the transformed integral 

sliding surface by the new corresponding control input 

can be obtained as                        

   
    

 


  
   

 
  

 (27) 

Substituting (23) into (27) leads to

   
 

 
  

   

 
   

  



 

 
   

  





 
   

  

       
   


  



 

 
 

 
 

  





 
 

      (28)

To stabilize the dynamics of the sliding surface in 

(28), the Assumption A1 is naturally necessary. By 

menas of the inequalities of gain (24), it can be easily 

shown that the derivative of the Lyapunov candidate 

function (25) and the existence condition of the sliding 

mode    

⋅                                (29)

is satisfied, which completes the proof.

From the above theorem, the control input in this paper 

can generate the sliding mode at every point on the 

modified transformed integral sliding surface from an 

arbitrary given initial point to an arbitrary given 

reference point. Therefore, the output trajectory by the 

proposed controller can be identical to that of the ideal 

sliding mode dynamics from a given initial state to a 

given reference point identically defined by the new 

sliding surface because of the insensitivity of the 

controlled system to uncertain parameters and 

disturbances in the sliding mode of the VSS[31].

3. Design Examples and Simulation Studies

Consider a following plant with uncertainties and 

disturbance

    
   

    


     (30)

where

  sin    cos   cos
≤   ≤  ≤ .  (31)

The MIVSC controller aims to drive the output of the 

plant (30) to any given   from any given initial state. In 

the steady state, the state should be    
  and 

   
   due to the steady state condition of 

(20). The transformation matrix to a controllable weak 

canonical form and the resultant transformed system 

matrices are   




 


 

 
 



 


 


 







             (32)

By means of Ackermanns formula, the continuous static 

gain is obtained 

    and                           (33)

so that the closed loop eigenvalues of   are located at 

  and  . By the relationship (21) and (22), the 

coefficient matrices of the new modified transformed 

integral sliding surface directly becomes 

           

   Cx                 (34)

       

  
,         (35)

As a result, the new transformed integral sliding surface 

becomes

 




  
   






  
   

    

(36)

For the second design phase of the MIVSC, the equation 

(3) in the Assumption A1 is calculated

 
 ≤                  (37)

Thus the Assumption A1 is satisfied in this design. The 

inequalities for the switching gains in discontinuous input 

term, (24) becomes

 


    ,                

 


 

 













  for   

 


 for   
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Fig.  4 Integral states

Fig. 5 Sliding surface

Fig. 6 Control input

Fig. 7 Four outputs for different commands      

 and 

Fig. 1 Ideal and real output responses

Fig. 2 Ideal and real state responses

Fig. 3 Phase portrait

 













  for   

 


 for   

          (38)




 

The selected control gains are 

     

   for   
 for   

   for   
 for   

  

                        (39)

and finally, the following control input is obtained to 

satisfy the existence condition of the sliding mode (29) as

  


     

   

  

   (40)

The simulations are carried out with    

sampling time and Fortran software. Fig. 1 shows the 

ideal output and real output from an initial condition 

     to a given command    . 

The ideal and real state responses by the proposed SMC 

are shown in Fig. 2. As can be seen, the trajectories 

identically equal to those of the ideal sliding output. The 

phase portrait from   to   is presented in 

Fig. 3. There is no reaching phase. The integral states of 

the output errors are depicted in Fig. 4. The fact of no 

reaching phase can be also found in Fig. 5 showing that 

the value of the new sliding surface chatters from the 

beginning without any reaching action. And this is 

fundamentally resulted from the switching of the 
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implemented control input from the initial time as shown 

in Fig. 6 as designed. Fig. 7 shows the output responses 

to the four different commands,      and  .  

from an initial condition   ..

3. Conclusions

  In this paper, an alternative design of an MIVSC is 

presented for the point-to-point regulation control of 

uncertain general linear systems under persistent 

disturbances. This algorithm basically concerns with the 

transformation of the integral sliding surface without the 

reaching phase and application to the point-to-point 

regulation control problem of uncertain non-canonical 

linear systems. To successfully remove the reaching 

phase problems, a sliding surface is augmented by an 

integral of the state error in order to define the hyper 

plane from any given initial condition and transformed by 

means of one transformation method in the invariant 

theorem of Utkin’s. And for its design, the system is 

transformed to a weak canonical form and the ideal 

sliding dynamics is obtained in form of the nominal 

system. After choosing the desired output performance by 

means of the point-to-point regulation controller design 

with the nominal system, the coefficient of the integral 

sliding surface is determined effectively. A corresponding 

control input is also designed for completely guaranteeing 

the ideal sliding output in spite of the uncertainties and 

disturbances. The robustness of the ideal sliding output 

itself is proved under all the persistent disturbances in 

Theorem 1 together with the existence condition of the 

sliding mode of the MIVSC and the asymptotic stability 

of the proposed MIVSC. Therefore, the designed controller 

can drive uncertain systems to any arbitrary desired 

value with the predetermined identical sliding output as 

designed in the sliding surface. The two design concepts 

of the performance and robustness are perfectly separated 

in the suggested point-to-point regulation MIVSC. In the 

point-to-point regulation control area, the robustness 

problem is completely solved. Through simulation studies, 

the usefulness of the proposed controller is verified.
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