• Title/Summary/Keyword: integral constant

Search Result 285, Processing Time 0.026 seconds

Reduced-order Mapping and Design-oriented Instability for Constant On-time Current-mode Controlled Buck Converters with a PI Compensator

  • Zhang, Xi;Xu, Jianping;Wu, Jiahui;Bao, Bocheng;Zhou, Guohua;Zhang, Kaitun
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1298-1307
    • /
    • 2017
  • The constant on-time current-mode controlled (COT-CMC) switching dc-dc converter is stable, with no subharmonic oscillation in its current loop when a voltage ripple in its outer voltage loop is ignored. However, when its output capacitance is small or its feedback gain is high, subharmonic oscillation may occur in a COT-CMC buck converter with a proportional-integral (PI) compensator. To investigate the subharmonic instability of COT-CMC buck converters with a PI compensator, an accurate reduced-order asynchronous-switching map model of a COT-CMC buck converter with a PI compensator is established. Based on this, the instability behaviors caused by output capacitance and feedback gain are investigated. Furthermore, an approximate instability condition is obtained and design-oriented stability boundaries in different circuit parameter spaces are yielded. The analysis results show that the instability of COT-CMC buck converters with a PI compensator is mainly affected by the output capacitance, output capacitor equivalent series resistance (ESR), feedback gain, current-sensing gain and constant on-time. The study results of this paper are helpful for the circuit parameter design of COT-CMC switching dc-dc converters. Experimental results are provided to verify the analysis results.

On a Reverse Hardy-Hilbert's Inequality

  • Yang, Bicheng
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.411-423
    • /
    • 2007
  • This paper deals with a reverse Hardy-Hilbert's inequality with a best constant factor by introducing two parameters ${\lambda}$ and ${\alpha}$. We also consider the equivalent form and the analogue integral inequalities. Some particular results are given.

  • PDF

One-dimensional head distribution analysis in two-layer porous media using integral equations (적분방정식(積分方程式)을 이용한 2층(二層) 다공성(多孔性) 매질(媒質)에서의 1차원 수두분포(水頭分布) 해석)

  • Lee, Sang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.97-103
    • /
    • 1993
  • This paper presents a quasi-analytical method using integral equations to obtain head distributions in unsaturated porous media with different hydrogeologic properties. One-dimensional soultion algorithms were developed for two cases of boundary conditions at the top: 1) constant head and 2) constant flux. Water table elevation at the bottom was assumed known for both cases. The methodology was applied to a fly ash disposal facility in an alluvium area. The results showed that the pressure head distributions had high nonlinearity with large gradients slightly above the interface of two media which made preliminary numerical solutions implausible. The developed method helped to structure finite element grids for improving convergence and accuracy.

  • PDF

Stress intensity factor of semi-infinite parallel crack propagated with constant velocity in dissimilar orthotropic strip under out-of-plane deformation (상이한 직교이방성 띠판에 대한 면외변형 하의 반무한 등속 평행균열에서의 응력확대계수)

  • Park, Jae-Wan;Kwon, Yong-Su;Jeong, Jae-Tack;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.447-456
    • /
    • 1997
  • Stress intensity factor of semi-infinite parallel crack propagation with constant velocity in dissimilar orthotropic strip under out-of-plane clamped desplacement is investigated. Using Fourier integral transforms the boundary value problem is derived by a pair of dual integral equation and finally reduced to a single Wiener-Hopf equation. By applying Wiener-Hopf technique the equation is solved. Applying this result the asymptotic stress fields near the crack tip are determined, from which the stress intensity factor is obtained in closed form. The more the ratio of anisotropy or the ratio of bi-material shear modulus increase in the main material including the crack, the more the stress intensity factor increases. Discontinuity in the stress intensity factor is found as the parallel crack approaches the interface. In special case, the results of isotropic materials agree well with those by the previous researchers.

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.

SOME RESULTS RELATED WITH POISSON-SZEGÖKERNEL AND BEREZIN TRANSFORM

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.417-426
    • /
    • 2011
  • Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE

  • Chen, Qinghua;Li, Yayun;Ma, Mengfan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1327-1345
    • /
    • 2021
  • In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.

Study on the Aerodynamic Characteristics of Wings Flying Over the Nonplanar Ground Surface

  • Han, Cheol-Heui;Lee, Kye-Beom;Cho, Jin-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • Aerodynamic analysis of NACA wings moving with a constant speed over guideways are performed using an indirect boundary element method (potential-based panel method). An integral equation is obtained by applying Green's theorem on all surfaces of the fluid domain. The surfaces over the wing and the guideways are discretized as rectangular panel elements. Constant strength singularities are distributed over the panel elements. The viscous shear layer behind the wing is represented by constant strength dipoles. The unknown strengths of potentials are determined by inverting the aerodynamic influence coefficient matrices constructed by using the no penetration conditions on the surfaces and the Kutta condition at the trailing edge of the wing. The aerodynamic characteristics for the wings flying over nonplanar ground surfaces are investigated for several ground heights.

Improvement of Dynamic Response for IPMSM based on DTC-CFTC Using Sliding Mode Control (일정 스위칭 주파수를 가지는 DTC 기반 IPMSM의 슬라이딩 모드 제어를 이용한 속응성 향상)

  • Han, Byeol;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.628-635
    • /
    • 2019
  • This paper proposes sliding mode control (SMC) method for improvement of dynamic response for IPMSM based on DTC with constant switching frequency. DTC with constant switching frequency method consists of PI torque controller and triangular comparator for constant torque error status. It has the poor dynamic response compared to conventional DTC. This paper proposes improvement method of dynamic response of DTC with constant switching frequency by using SMC. Simulation results confirm the effectiveness of the proposed method.

Two Dimensional Elasto-plastic Stress Analysis by the B.E.M. (경계요소법에 의한 2차원 탄소성응력해석)

  • 조희찬;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.621-629
    • /
    • 1992
  • This study is concerned with an application of the Boundary Element Method to 2-dimensional elastoplastic stress analysis on the material nonlinearities. The boundary integral formulation adopted an initial stress equation in the inelastic term. In order to determine the initial stress increment, the increment of initial elastic strain energy due to elastic increment in stressstrain curve was used as the convergence criterion during iterative process. For the validity of this procedure, the results of B.E.M. with constant elements and NISA with linear elements where compared on the thin plate with 2 edge v-notches under static tension and the thick cylinder under internal pressure. And this paper compared the results of using unmedical integral with the results of using semi-analytical integral on the plastic domain integral.