• Title/Summary/Keyword: instruction set architecture (ISA)

Search Result 18, Processing Time 0.02 seconds

Benchmarking Korean Block Ciphers on 32-Bit RISC-V Processor (32-bit RISC-V 프로세서에서 국산 블록 암호 성능 밴치마킹)

  • Kwak, YuJin;Kim, YoungBeom;Seo, Seog Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.331-340
    • /
    • 2021
  • As the communication industry develops, the development of SoC (System on Chip) is increasing. Accordingly, the paradigm of technology design of industries and companies is changing. In the existing process, companies purchased micro-architecture, but now they purchase ISA (Instruction Set Architecture), and companies design the architecture themselves. RISC-V is an open instruction set based on a reduced instruction set computer. RISC-V is equipped with ISA, which can be expanded through modularization, and an expanded version of ISA is currently being developed through the support of global companies. In this paper, we present benchmarking frameworks ARIA, LEA, and PIPO of Korean block ciphers in RISC-V. We propose implementation methods and discuss performance by utilizing the basic instruction set and features of RISC-V.

Code Size Reduction and Execution performance Improvement with Instruction Set Architecture Design based on Non-homogeneous Register Partition (코드감소와 성능향상을 위한 이질 레지스터 분할 및 명령어 구조 설계)

  • Kwon, Young-Jun;Lee, Hyuk-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1575-1579
    • /
    • 1999
  • Embedded processors often accommodate two instruction sets, a standard instruction set and a compressed instruction set. With the compressed instruction set, code size can be reduced while instruction count (and consequently execution time) can be increased. To achieve code size reduction without significant increase of execution time, this paper proposes a new compressed instruction set architecture, called TOE (Two Operations Execution). The proposed instruction set format includes the parallel bit that indicates an instruction can be executed simultaneously with the next instruction. To add the parallel bit, TOE instruction format reduces the destination register field. The reduction of the register field limits the number of registers that are accessible by an instruction. To overcome the limited accessibility of registers, TOE adapts non-homogeneous register partition in which registers are divided into multiple subsets, each of which are accessed by different groups of instructions. With non-homogeneous registers, each instruction can access only a limited number of registers, but an entire program can access all available registers. With efficient non-homogeneous register allocator, all registers can be used in a balanced manner. As a result, the increase of code size due to register spills is negligible. Experimental results show that more than 30% of TOE instructions can be executed in parallel without significant increase of code size when compared to existing Thumb instruction set.

  • PDF

Using a H/W ADL-based Compiler for Fixed-point Audio Codec Optimization thru Application Specific Instructions (응용프로그램에 특화된 명령어를 통한 고정 소수점 오디오 코덱 최적화를 위한 ADL 기반 컴파일러 사용)

  • Ahn Min-Wook;Paek Yun-Heung;Cho Jeong-Hun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.4 s.101
    • /
    • pp.275-288
    • /
    • 2006
  • Rapid design space exploration is crucial to customizing embedded system design for exploiting the application behavior. As the time-to-market becomes a key concern of the design, the approach based on an application specific instruction-set processor (ASIP) is considered more seriously as one alternative design methodology. In this approach, the instruction set architecture (ISA) for a target processor is frequently modified to best fit the application with regard to code size and speed. Two goals of this paper is to introduce our new retargetable compiler and how it has been used in ASIP-based design space exploration for a popular digital signal processing (DSP) application. Newly developed retargetable compiler provides not only the functionality of previous retargetable compilers but also visualizes the features of the application program and profiles it so that it can help architecture designers and application programmers to insert new application specific instructions into target architecture for performance increase. Given an initial RISC-style ISA for the target processor, we characterized the application code and incrementally updated the ISA with more application specific instructions to give the compiler a better chance to optimize assembly code for the application. We get 32% performance increase and 20% program size reduction using 6 audio codec specific instructions from retargetable compiler. Our experimental results manifest a glimpse of evidence that a higgly retargetable compiler is essential to rapidly prototype a new ASIP for a specific application.

Pair Register Allocation Algorithm for 16-bit Instruction Set Architecture (ISA) Processor (16비트 명령어 기반 프로세서를 위한 페어 레지스터 할당 알고리즘)

  • Lee, Ho-Kyoon;Kim, Seon-Wook;Han, Young-Sun
    • The KIPS Transactions:PartA
    • /
    • v.18A no.6
    • /
    • pp.265-270
    • /
    • 2011
  • Even though 32-bit ISA based microprocessors are widely used more and more, 16-bit ISA based processors are still being frequently employed for embedded systems. Intel 8086, 80286, Motorola 68000, and ADChips AE32000 are the representatives of the 16-bit ISA based processors. However, due to less expressiveness of the 16-bit ISA from its narrow bit width, we need to execute more 16-bit instructions for the same implementation compared to 32-bit instructions. Because the number of executed instructions is a very important factor in performance, we have to resolve the problem by improving the expressiveness of the 16-bit ISA. In this paper, we propose a new pair register allocation algorithm to enhance an original graph-coloring based register allocation algorithm. Also, we explain about both the performance result and further research directions.

ARM Instruction Set Architecture Analysis for Binary Analysis (바이너리 분석을 위한 ARM 명령어 구조 분석)

  • Jung, Seungil;Ryu, Chanho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.167-170
    • /
    • 2018
  • 본 논문에서는 바이너리 분석을 위한 ARM의 구조를 분석한다. 바이너리 분석이란 0과 1로 이루어진 이진 값의 의미를 분석하는 것을 말한다. 바이너리 코드를 역어셈블(Disassemble)하여 값으로만 존재하는 데이터가 어떤 명령어(Instruction)이며 어떤 피연산자(Operand)를 의미하는지 알 수 있다. 소스코드를 컴파일하여 실행파일이 생성이 되면 바이너리 값으로 구성되며 이 실행파일을 바이너리 파일이라고도 한다. 바이너리 파일을 분석하기 위해서 CPU의 명령어 집합 구조(Instruction Set Architecture)를 알아야 한다. PC와 서버, 모바일 등에서 많이 사용되고 있는 ARM 중에서 64비트를 지원하는 AArch64(ARMv8)의 명령어 구조를 분석하여 효율적인 바이너리 분석의 기반을 마련하고자 한다.

  • PDF

Design of an ARM7 Core with a Singed Integer Division Instruction (Signed Integer Division 명령어를 추가한 ARM7 Core 설계)

  • 오민석;조태헌;남기훈;이광엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1391-1394
    • /
    • 2003
  • 본 논문은 ARM7 TDMI 마이크로프로세서의 연산기능 중 구현되지 알은 나눗셈 연산 기능을 추가로 구현하였다. 이를 위해 ARM ISA(Instruction Set Architecture)에 부호를 고려한 나눗셈 명령어인 'SDIV' 명령어를 추가로 정의하였으며, 나눗셈 알고리즘 Signed Nonrestoring Division을 수행할 수 있도록 ARM7 TDMI 마이크로프로세서의 Data Path를 재 설계하였다. 제안된 방법의 타당성을 검증하기 위하여 현재 ARM7 TDMI 마이크로프로세서의 정수 나눗셈 연산처리 방법과 제안된 구조에서의 정수 나눗셈 연산 처리 방법을 비교하였으며, 그 겉과 수행 cycle의 수가 40%로 감소되는 것을 확인하였다

  • PDF

The Design of low-cost SIMD MAC/MAS for Embedded Systems (임베디드 시스템을 위한 저비용 SIMD MAC/MAS 블록 설계)

  • Lee Yong Joo;Jung Jin Woo;Lee Yong Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1460-1468
    • /
    • 2004
  • In this paper, we developed a low-area and low-cost SIMD MAC/MAS(Single Instruction Multiple Data Multiply and ACcumulate/Multiply And Subtract) for multimedia that is used much in real life. We compared the result of this research with a previously developed more large and high performance SIMD MAC/MAS. This paper is consist of 5 parts, which are an introduction, the contents of designing SIMD MAC/MAS hardware, a special qualities for previous works, the result of synthesis and conclusion. The design result reduced by size 32% of whole hardware than 64 bit SIMD MAC/MAS block of designed for high performance. This improved ISA (Instruction Set Architecture) to be suitable to embedded DSP(Digital Signal Processor), and shortened bit range of 64-bit data to 32-bit and implement more optimally.

Design and Evaluation of 32-Bit RISC-V Processor Using FPGA (FPGA를 이용한 32-Bit RISC-V 프로세서 설계 및 평가)

  • Jang, Sungyeong;Park, Sangwoo;Kwon, Guyun;Suh, Taeweon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • RISC-V is an open-source instruction set architecture which has a simple base structure and can be extensible depending on the purpose. In this paper, we designed a small and low-power 32-bit RISC-V processor to establish the base for research on RISC-V embedded systems. We designed a 2-stage pipelined processor which supports RISC-V base integer instruction set except for FENCE and EBREAK instructions. The processor also supports privileged ISA for trap handling. It used 1895 LUTs and 1195 flip-flops, and consumed 0.001W on Xilinx Zynq-7000 FPGA when synthesized using Vivado Design Suite. GPIO, UART, and timer peripherals are additionally used to compose the system. We verified the operation of the processor on FPGA with FreeRTOS at 16MHz. We used Dhrystone and Coremark benchmarks to measure the performance of the processor. This study aims to provide a low-power, high-efficiency microprocessor for future extension.

Core-A: A 32-bit Synthesizable Processor Core

  • Kim, Ji-Hoon;Lee, Jong-Yeol;Ki, Ando
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.83-88
    • /
    • 2015
  • Core-A is 32-bit synthesizable processor core with a unique instruction set architecture (ISA). In this paper, the Core-A ISA is introduced with discussion of useful features and the development environment, including the software tool chain and hardware on-chip debugger. Core-A is described using Verilog-HDL and can be customized for a given application and synthesized for an application-specific integrated circuit or field-programmable gate array target. Also, the GNU Compiler Collection has been ported to support Core-A, and various predesigned platforms are well equipped with the established design flow to speed up the hardware/software co-design for a Core-A-based system.

A Design and Implementation of 32-bit Five-Stage RISC-V Processor Using FPGA (FPGA를 이용한 32-bit RISC-V 5단계 파이프라인 프로세서 설계 및 구현)

  • Jo, Sangun;Lee, Jonghwan;Kim, Yongwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.27-32
    • /
    • 2022
  • RISC-V is an open instruction set architecture (ISA) developed in 2010 at UC Berkeley, and active research is being conducted as a processor to compete with ARM. In this paper, we propose an SoC system including an RV32I ISA-based 32-bit 5-stage pipeline processor and AHB bus master. The proposed RISC-V processor supports 37 instructions, excluding FENCE, ECALL, and EBREAK instructions, out of a total of 40 instructions based on RV32I ISA. In addition, the RISC-V processor can be connected to peripheral devices such as BRAM, UART, and TIMER using the AHB-lite bus protocol through the proposed AHB bus master. The proposed SoC system was implemented in Arty A7-35T FPGA with 1,959 LUTs and 1,982 flip-flops. Furthermore, the proposed hardware has a maximum operating frequency of 50 MHz. In the Dhrystone benchmark, the proposed processor performance was confirmed to be 0.48 DMIPS.