• Title/Summary/Keyword: innate immune

Search Result 543, Processing Time 0.025 seconds

Antimetastatic Effects of Jipae-san by Inflammation Control and Activation of Innate Immune System (지패산(芷貝散) 추출물의 염증억제와 선천면역 활성에 의한 항암 효과)

  • Heo, Su-Jeong;Hwang, Deok-Sang;Lee, Jin-Moo;Lee, Chang-Hoon;Lee, Kyung-Sub;Jang, Jun-Bock
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.4
    • /
    • pp.1-14
    • /
    • 2014
  • Objectives: This study was designed to investigate the anti-tumor metastasis by anti-inflammatory and innate immunomodulating effects of extracts of Jipae-san on cancer cells. Methods: Antimetastatic experiments were conducted in vivo mouse model by using 4T1 mouse mammary carcinoma cells. Cell viability of Jipae-san was tested with 4T1 mouse mammary carcinoma cells, colon 26-M3.1 carcinoma cells and macrophage. In addition expression of $TNF-{\alpha}$ and NO induced by LPS was measured after treating with Jipae-san. To observe innate immunomodulating effects of Jipae-san on macrophage, we measured $TNF-{\alpha}$, IL-12, IL-6 and MCP-1, respectively. Cell cytotoxicity was tested with the macrophage stimulated with Jipae-san and we evaluated the activation of $TNF-{\alpha}$ and NO. And the effect of Jipae-san on metastasis was measured without NK-cell using GM1 serum. Results: Intravenous inoculation of Jipae-san significantly inhibited metastasis of 4T1 mouse mammary carcinoma cells. In an in vitro cytotoxicity analysis, cell growth are closer to 100% less than $1,000{\mu}g/ml$ concentration. The expression of $TNF-{\alpha}$ and NO induced by LPS after treating Jipae-san was down regulated in dose-dependent manner. Level of cytokines such as $TNF-{\alpha}$, IL-12, IL-6 and MCP-1 of Jipae-san group were up regulated in compared to the control group. The macrophage stimulated with Jipae-san significantly inhibits the cancer cell at ratio of 10:1, 20:1. The activation of NO was significantly up regualted in a group of 5:1, 10:1, 20:1. The depletion of NK-cells by anti-asialo GM1 serum partly abolished the inhibitory effect of Jipae-san on tumor metastasis. Conclusions: Jipae-san appears to have considerable activity on the anti-metastasis by inflammation control and activation of innate immune system.

Study of Innate Immunity Suppression of Yeonsan Ogye listed on Dong-eui-bo-gam (동의보감에 수재된 오계(烏鷄)의 선천면역반응 억제에 관한 연구)

  • Choi, Hak Joo;Sim, Boo Yong;Joo, In Hwan;Yoo, Sun Kyun;Kim, Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.236-241
    • /
    • 2016
  • The aim of the study is to evaluate immune-enhancing effects of Yeonsan Ogye. Various extract of Yeonsan Ogye (200 and 400 mg/kg/daily) was treated orally to Balb/c mice for 1 week, before acute inflammation was induced by LPS. After cytokine (IFN-γ, TNF-α, IL-6, and IL-1β) and immune cells (white blood cell, neutrophil, lymphocyte, and monocyte) level by serum and blood were counted. As a result, Oral treatment of Yeonsan Ogye extract to the Balb/c mice were significantly decreased cytokine level in serum, in comparison with control group. in addition, production of white blood cell and monocyte in blood was decreased and granulocyte was increased respectively, in comparison with control. Our results demonstrated that Yeonsan Ogye extracts seem to have significant immune-enhancing. Thus, Yeonsan ogye may be developed as a raw material for new health food and medicine to ease the symptoms related with inflammatory and immune.

Fcγ Receptors Modulate Pulmonary Inflammation by Activating Innate Immune Cells in Murine Hypersensitivity Pneumonitis

  • Park, Hyo Jin;Kim, Hye Sung;Chung, Doo Hyun
    • IMMUNE NETWORK
    • /
    • v.10 no.1
    • /
    • pp.26-34
    • /
    • 2010
  • Background: Hypersensitivity pneumonitis (HP) is an interstitial lung disease that develops following repeated exposure to inhaled particulate antigens. The family of $Fc{\gamma}$ receptors ($Fc{\gamma}Rs$) has emerged as central regulators for modulating both pro-and anti-inflammatory responses. However, the role of $Fc{\gamma}Rs$ in the development of HP has not been investigated yet. Methods: To explore the functional roles of $Fc{\gamma}Rs$ in HP, $Fc{\gamma}R^{-/-}$ and B6 mice were challenged with Saccharopolyspora rectivirgula (SR) antigen intranasally, and compared these mice in terms of the histological change, infiltrated immune cells in BALF and in vitro immune responses. Results: $Fc{\gamma}R^{-/-}$ mice exhibited attenuation of HP in terms of histological alterations, and reduced numbers of neutrophils and macrophages in and the increased CD4 : CD8 ratio of bronchoalveolar lavage fluid. The lungs of $Fc{\gamma}R^{-/-}$ mice showed high production of Th2 cytokine such as IL-4 and slightly low production of Th1 cytokine, INF-${\gamma}$ compared to those of B6 mice. However, SR-specific adaptive immune responses of $Fc{\gamma}R^{-/-}$ mice were similar to those of B6 mice. Conclusion: These results demonstrate that activating $Fc{\gamma}$ receptors play an important role in activating neutrophils and macrophages in pulmonary inflammation and inducing Th1 differentiation by regulating cytokine expression in SR-induced HP.

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.128-137
    • /
    • 2014
  • Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.

Glucocorticoids Impair the 7α-Hydroxycholesterol-Enhanced Innate Immune Response

  • Yonghae Son;Bo-Young Kim;Miran Kim;Jaesung Kim;Ryuk Jun Kwon;Koanhoi Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.5
    • /
    • pp.40.1-40.14
    • /
    • 2023
  • Glucocorticoids suppress the vascular inflammation that occurs under hypercholesterolemia, as demonstrated in an animal model fed a high-cholesterol diet. However, the molecular mechanisms underlying these beneficial effects remain poorly understood. Because cholesterol is oxidized to form cholesterol oxides (oxysterols) that are capable of inducing inflammation, we investigated whether glucocorticoids affect the immune responses evoked by 7α-hydroxycholesterol (7αOHChol). The treatment of human THP-1 monocytic cells with dexamethasone (Dex) and prednisolone (Pdn) downregulated the expression of pattern recognition receptors (PRRs), such as TLR6 and CD14, and diminished 7αOHChol-enhanced response to FSL-1, a TLR2/6 ligand, and lipopolysaccharide, which interacts with CD14 to initiate immune responses, as determined by the reduced secretion of IL-23 and CCL2, respectively. Glucocorticoids weakened the 7αOHChol-induced production of CCL2 and CCR5 ligands, which was accompanied by decreased migration of monocytic cells and CCR5-expressing Jurkat T cells. Treatment with Dex or Pdn also reduced the phosphorylation of the Akt-1 Src, ERK1/2, and p65 subunits. These results indicate that both Dex and Pdn impair the expression of PRRs and their downstream products, chemokine production, and phosphorylation of signaling molecules. Collectively, glucocorticoids suppress the innate immune response and activation of monocytic cells to an inflammatory phenotype enhanced or induced by 7αOHChol, which may contribute to the anti-inflammatory effects in hypercholesterolemic conditions.

  • PDF

The Anti-Inflammatory Effects of Phytochemicals by the Modulation of Innate Immunity

  • Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.181-192
    • /
    • 2012
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defense against invading microbial pathogens. In general, TLRs have two major downstream signaling pathways; myeloid differential factor 88 (MyD88) and Toll/IL-1R domain-containing adaptor inducing IFN-${\beta}$ (TRIF) leading to the activation of NF-${\kappa}B$ and IRF3. Numerous studies demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit NF-${\kappa}B$ activation induced by pro-inflammatory stimuli including lipopolysaccharide and tumor necrosis factor-${\alpha}$ ($TNF{\alpha}$). However, the direct molecular targets for such anti-inflammatory phytochemicals are not fully identified. In this paper, we will discuss about the molecular targets of phytochemicals in TLRs signaling pathways. These results present a novel anti-inflammatory mechanism of phytochemicals in TLRs signaling.

Sphingolipids and Antimicrobial Peptides: Function and Roles in Atopic Dermatitis

  • Park, Kyungho;Lee, Sinhee;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.251-257
    • /
    • 2013
  • Inflammatory skin diseases such as atopic dermatitis (AD) and rosacea were complicated by barrier abrogation and deficiency in innate immunity. The first defender of epidermal innate immune response is the antimicrobial peptides (AMPs) that exhibit a broad-spectrum antimicrobial activity against multiple pathogens, including Gram-positive and Gram-negative bacteria, viruses, and fungi. The deficiency of these AMPs in the skin of AD fails to protect our body against virulent pathogen infections. In contrast to AD where there is a suppression of AMPs, rosacea is characterized by overexpression of cathelicidin antimicrobial peptide (CAMP), the products of which result in chronic epidermal inflammation. In this regard, AMP generation that is controlled by a key ceramide metabolite S1P-dependent mechanism could be considered as alternate therapeutic approaches to treat these skin disorders, i.e., Increased S1P levels strongly stimulated the CAMP expression which elevated the antimicrobial activity against multiple pathogens resulting the improved AD patient skin.

Interleukin 17-expressing Innate Synovial Cells Drive K/BxN Serum-induced Arthritis

  • Cho, Wang Sik
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.551-552
    • /
    • 2018
  • K/BxN serum can induce arthritis in normal mice because of abundant autoantibodies that trigger an innate inflammatory response in joints. To determine whether IL-17 is involved in the pathogenesis of serum-induced arthritis, we injected wild-type and $IL-17^{-/-}$ mice with K/BxN serum and evaluated them for signs of arthritis. Unlike wild-type mice, $IL-17^{-/-}$ mice did not show any signs of arthritis. IL-17 was produced predominantly by $CD3^-CD4^-gdTCR^-NK1.1^-Sca1^{int}Thy1^{hi}$ cells residing in the inflamed synovial tissue. When synovial cells extracted from normal joints were stimulated with IL-23 or autoantibody-containing immune complexes, a substantial fraction of $Sca1^{int}Thy1^{hi}$ cells produced IL-17. Thus, we have identified a novel population of IL-17-producing innate synovial cells that play a crucial role in the development of K/BxN serum-induced arthritis.

  • PDF

Regulation of the Immune System by NF-κB and IκB

  • Liou, Hsiou-Chi
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.537-546
    • /
    • 2002
  • NF-${\kappa}B$/Rel transcription factor family participates in diverse biological processes including embryo development, hematopoiesis, immune regulation, as well as neuronal functions. In this review, the NF-${\kappa}B$/Rel signal transduction pathways and their important roles in the regulation of immune system will be discussed. NF-${\kappa}B$/Rel members execute distinct functions in multiple immune cell types via the regulation of target genes essential for cell proliferation, survival, effector functions, cell trafficking and communication, as well as the formation of lymphoid architecture. Consequently, proper activation of NF-${\kappa}B$/Rel during immune responses to allergens, auto-antigens, allo-antigens, and pathogenic infection is crucial for the integrity of host innate and adaptive immunity.

Nitric Oxide Signal Transduction and Its Role in Skin Sensitization

  • Jong Hun Kim;Min Sik Choi
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.388-394
    • /
    • 2023
  • Nitric oxide (NO) is a signaling molecule that plays a crucial role in numerous cellular physiological processes. In the skin, NO is produced by keratinocytes, fibroblasts, endothelial cells, and immune cells and is involved in skin functions such as vasodilation, pigmentation, hair growth, wound healing, and immune responses. NO modulates both innate and adaptive immune responses. As a signaling molecule and cytotoxic effector, NO influences the function of immune cells and production of cytokines. NO is a key mediator that protects against or contributes to skin inflammation. Moreover, NO has been implicated in skin sensitization, a process underlying contact dermatitis. It modulates the function of dendritic cells and T cells, thereby affecting the immune response to allergens. NO also plays a role in contact dermatitis by inducing inflammation and tissue damage. NO-related chemicals, such as nitrofatty acids and nitric oxide synthase (NOS) inhibitors, have potential therapeutic applications in skin conditions, including allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). Further research is required to fully elucidate the therapeutic potential of NO-related chemicals and develop personalized treatment strategies for skin conditions.