DOI QR코드

DOI QR Code

Nitric Oxide Signal Transduction and Its Role in Skin Sensitization

  • Jong Hun Kim (Department of Food Science and Biotechnology, and Institute for Basic Sciences, Sungshin Women's University) ;
  • Min Sik Choi (Lab of Pharmacology, College of Pharmacy, Dongduk Women's University)
  • Received : 2023.05.29
  • Accepted : 2023.06.09
  • Published : 2023.07.01

Abstract

Nitric oxide (NO) is a signaling molecule that plays a crucial role in numerous cellular physiological processes. In the skin, NO is produced by keratinocytes, fibroblasts, endothelial cells, and immune cells and is involved in skin functions such as vasodilation, pigmentation, hair growth, wound healing, and immune responses. NO modulates both innate and adaptive immune responses. As a signaling molecule and cytotoxic effector, NO influences the function of immune cells and production of cytokines. NO is a key mediator that protects against or contributes to skin inflammation. Moreover, NO has been implicated in skin sensitization, a process underlying contact dermatitis. It modulates the function of dendritic cells and T cells, thereby affecting the immune response to allergens. NO also plays a role in contact dermatitis by inducing inflammation and tissue damage. NO-related chemicals, such as nitrofatty acids and nitric oxide synthase (NOS) inhibitors, have potential therapeutic applications in skin conditions, including allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). Further research is required to fully elucidate the therapeutic potential of NO-related chemicals and develop personalized treatment strategies for skin conditions.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant (2021R1F1A1064344) and by the Korea Environment Industry & Technology Institute (KEITI) through "the Technology Development Project for Safety Management of Household Chemical Products," funded by the Korea Ministry of Environment (MOE) (RS-2023-00215856).

References

  1. Ali, F. and Sultana, S. (2012) Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays. Mol. Cell. Biochem. 360, 133-145. https://doi.org/10.1007/s11010-011-1051-7
  2. Aquino, M. and Rosner, G. (2019) Systemic contact dermatitis. Clin. Rev. Allergy Immunol. 56, 9-18. https://doi.org/10.1007/s12016-018-8686-z
  3. Bago, A., Cayuela, M. L., Gil, A., Calvo, E., Vazquez, J., Queiro, A., Schopfer, F. J., Radi, R., Serrador, J. M. and Iniguez, M. A. (2023) Nitro-oleic acid regulates T cell activation through post-translational modification of calcineurin. Proc. Natl. Acad. Sci. U. S. A. 120, e2208924120.
  4. Bath, P. M., Coleman, C. M., Gordon, A. L., Lim, W. S. and Webb, A. J. (2021) Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res. 10, 536.
  5. Bogdan, C. (2015) Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 36, 161-178. https://doi.org/10.1016/j.it.2015.01.003
  6. Cals-Grierson, M. M. and Ormerod, A. D. (2004) Nitric oxide function in the skin. Nitric Oxide 10, 179-193. https://doi.org/10.1016/j.niox.2004.04.005
  7. Carlstrom, M., Lundberg, J. O. and Weitzberg, E. (2018) Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol. (Oxf.) 224, e13080.
  8. Chen, Z., Haus, J. M., Chen, L., Wu, S. C., Urao, N., Koh, T. J. and Minshall, R. D. (2020) CCL28-induced CCR10/eNOS interaction in angiogenesis and skin wound healing. FASEB J. 34, 5838-5850. https://doi.org/10.1096/fj.201902060R
  9. Choi, M. S., Nakamura, T., Cho, S. J., Han, X., Holland, E. A., Qu, J., Petsko, G. A., Yates, J. R., Liddington, R. C. and Lipton, S. A. (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson's disease models. J. Neurosci. 34, 15123-15131. https://doi.org/10.1523/JNEUROSCI.4751-13.2014
  10. Cinelli, M. A., Do, H. T., Miley, G. P. and Silverman, R. B. (2020) Inducible nitric oxide synthase: regulation, structure, and inhibition. Med. Res. Rev. 40, 158-189. https://doi.org/10.1002/med.21599
  11. Contestabile, A. (2012) Role of nitric oxide in cerebellar development and function: focus on granule neurons. Cerebellum 11, 50-61. https://doi.org/10.1007/s12311-010-0234-1
  12. Cripps, J. G., Wang, J., Maria, A., Blumenthal, I. and Gorham, J. D. (2010) Type 1 T helper cells induce the accumulation of myeloidderived suppressor cells in the inflamed Tgfb1 knockout mouse liver. Hepatology 52, 1350-1359. https://doi.org/10.1002/hep.23841
  13. Cyr, A. R., Huckaby, L. V., Shiva, S. S. and Zuckerbraun, B. S. (2020) Nitric oxide and endothelial dysfunction. Crit. Care Clin. 36, 307-321. https://doi.org/10.1016/j.ccc.2019.12.009
  14. Degjoni, A., Campolo, F., Stefanini, L. and Venneri, M. A. (2022) The NO/cGMP/PKG pathway in platelets: the therapeutic potential of PDE5 inhibitors in platelet disorders. J. Thromb. Haemost. 20, 2465-2474. https://doi.org/10.1111/jth.15844
  15. Dugas, N., Dereuddre-Bosquet, N., Goujard, C., Dormont, D., Tardieu, M. and Delfraissy, J. F. (2000) Role of nitric oxide in the promoting effect of HIV type 1 infection and of gp120 envelope glycoprotein on interleukin 4-induced IgE production by normal human mononuclear cells. AIDS Res. Hum. Retroviruses 16, 251-258. https://doi.org/10.1089/088922200309340
  16. Fitzgerald, K. A. and Kagan, J. C. (2020) Toll-like receptors and the control of immunity. Cell 180, 1044-1066. https://doi.org/10.1016/j.cell.2020.02.041
  17. Ford, P. C. and Miranda, K. M. (2020) The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 103, 31-46. https://doi.org/10.1016/j.niox.2020.07.004
  18. Gantner, B. N., LaFond, K. M. and Bonini, M. G. (2020) Nitric oxide in cellular adaptation and disease. Redox Biol. 34, 101550.
  19. Garcia-Ortiz, A. and Serrador, J. M. (2018) Nitric oxide signaling in T cell-mediated immunity. Trends Mol. Med. 24, 412-427. https://doi.org/10.1016/j.molmed.2018.02.002
  20. Garthwaite, J. (2019) NO as a multimodal transmitter in the brain: discovery and current status. Br. J. Pharmacol. 176, 197-211. https://doi.org/10.1111/bph.14532
  21. Giordano, D., Draves, K. E., Li, C., Hohl, T. M. and Clark, E. A. (2014) Nitric oxide regulates BAFF expression and T cell-independent antibody responses. J. Immunol. 193, 1110-1120. https://doi.org/10.4049/jimmunol.1303158
  22. Guzik, T. J., Korbut, R. and Adamek-Guzik, T. (2003) Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469-487.
  23. Horikoshi, T., Nakahara, M., Kaminaga, H., Sasaki, M., Uchiwa, H. and Miyachi, Y. (2000) Involvement of nitric oxide in UVB-induced pigmentation in guinea pig skin. Pigment Cell Res. 13, 358-363. https://doi.org/10.1034/j.1600-0749.2000.130509.x
  24. Hyun, E., Bolla, M., Steinhoff, M., Wallace, J. L., Del Soldato, P. and Vergnolle, N. (2004) Anti-inflammatory effects of nitric oxide-releasing hydrocortisone NCX 1022, in a murine model of contact dermatitis. Br. J. Pharmacol. 143, 618-625. https://doi.org/10.1038/sj.bjp.0705854
  25. Jayasekera, J. P., Vinuesa, C. G., Karupiah, G. and King, N. J. C. (2006) Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice. J. Gen. Virol. 87, 3361-3371. https://doi.org/10.1099/vir.0.82131-0
  26. Johansen, J. D., Bonefeld, C. M., Schwensen, J. F. B., Thyssen, J. P. and Uter, W. (2022) Novel insights into contact dermatitis. J. Allergy Clin. Immunol. 149, 1162-1171. https://doi.org/10.1016/j.jaci.2022.02.002
  27. Jourd'heuil, D., Miranda, K. M., Kim, S. M., Espey, M. G., Vodovotz, Y., Laroux, S., Mai, C. T., Miles, A. M., Grisham, M. B. and Wink, D. A. (1999) The oxidative and nitrosative chemistry of the nitric oxide/superoxide reaction in the presence of bicarbonate. Arch. Biochem. Biophys. 365, 92-100. https://doi.org/10.1006/abbi.1999.1143
  28. Kashfi, K., Kannikal, J. and Nath, N. (2021) Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells 10, 3194.
  29. Krol, M. and Kepinska, M. (2020) Human nitric oxide synthase-its functions, polymorphisms, and inhibitors in the context of inflammation, diabetes and cardiovascular diseases. Int. J. Mol. Sci. 22, 56.
  30. Kuypers, M. M. M., Marchant, H. K. and Kartal, B. (2018) The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263-276. https://doi.org/10.1038/nrmicro.2018.9
  31. Lehners, M., Dobrowinski, H., Feil, S. and Feil, R. (2018) cGMP signaling and vascular smooth muscle cell plasticity. J. Cardiovasc. Dev. Dis. 5, 20.
  32. Li, Y. and Li, L. (2021) Contact dermatitis: classifications and management. Clin. Rev. Allergy Immunol. 61, 245-281. https://doi.org/10.1007/s12016-021-08875-0
  33. Lim, S. C. (2013) Interrelation between expression of ADAM 10 and MMP 9 and synthesis of peroxynitrite in doxorubicin induced cardiomyopathy. Biomol. Ther. (Seoul) 21, 371-380. https://doi.org/10.4062/biomolther.2013.034
  34. Lipton, S. A. (2022) Hidden networks of aberrant protein transnitrosylation contribute to synapse loss in Alzheimer's disease. Free Radic. Biol. Med. 193, 171-176.
  35. Lundberg, J. O. and Weitzberg, E. (2022) Nitric oxide signaling in health and disease. Cell 185, 2853-2878. https://doi.org/10.1016/j.cell.2022.06.010
  36. Ma, L., Hu, L., Feng, X. and Wang, S. (2018) Nitrate and nitrite in health and disease. Aging Dis. 9, 938-945. https://doi.org/10.14336/AD.2017.1207
  37. Mahidhara, R. S., Hoffman, R. A., Huang, S., Wolf-Johnston, A., Vodovotz, Y., Simmons, R. L. and Billiar, T. R. (2003) Nitric oxide-mediated inhibition of caspase-dependent T lymphocyte proliferation. J. Leukoc. Biol. 74, 403-411. https://doi.org/10.1189/jlb.0602293
  38. Man, M. Q., Wakefield, J. S., Mauro, T. M. and Elias, P. M. (2022a) Regulatory role of nitric oxide in cutaneous inflammation. Inflammation 45, 949-964. https://doi.org/10.1007/s10753-021-01615-8
  39. Man, M. Q., Wakefield, J. S., Mauro, T. M. and Elias, P. M. (2022b) Role of nitric oxide in regulating epidermal permeability barrier function. Exp. Dermatol. 31, 290-298. https://doi.org/10.1111/exd.14470
  40. Mathers, A. R., Carey, C. D., Killeen, M. E., Diaz-Perez, J. A., Salvatore, S. R., Schopfer, F. J., Freeman, B. A. and Falo, L. D., Jr. (2017) Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice. Allergy 72, 656-664. https://doi.org/10.1111/all.13067
  41. Mehling, R., Schwenck, J., Lemberg, C., Trautwein, C., Zizmare, L., Kramer, D., Muller, A., Fehrenbacher, B., Gonzalez-Menendez, I., Quintanilla-Martinez, L., Schroder, K., Brandes, R. P., Schaller, M., Ruf, W., Eichner, M., Ghoreschi, K., Rocken, M., Pichler, B. J. and Kneilling, M. (2021) Immunomodulatory role of reactive oxygen species and nitrogen species during T cell-driven neutrophil-enriched acute and chronic cutaneous delayed-type hypersensitivity reactions. Theranostics 11, 470-490. https://doi.org/10.7150/thno.51462
  42. Mehrotra, P., Mishra, K. P., Raman, G. and Banerjee, G. (2005) Differential regulation of free radicals (reactive oxygen and nitrogen species) by contact allergens and irritants in human keratinocyte cell line. Toxicol. Mech. Methods 15, 343-350. https://doi.org/10.1080/15376520500191490
  43. Nagy, G., Koncz, A. and Perl, A. (2003) T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redoxdependent production of nitric oxide. J. Immunol. 171, 5188-5197. https://doi.org/10.4049/jimmunol.171.10.5188
  44. Nakamura, T. and Lipton, S. A. (2020) Nitric oxide-dependent protein post-translational modifications impair mitochondrial function and metabolism to contribute to neurodegenerative diseases. Antioxid. Redox Signal. 32, 817-833. https://doi.org/10.1089/ars.2019.7916
  45. Nakamura, T. and Lipton, S. A. (2016) Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol. Sci. 37, 73-84. https://doi.org/10.1016/j.tips.2015.10.002
  46. Nakamura, T., Oh, C. K., Zhang, X. and Lipton, S. A. (2021) Protein Snitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radic. Biol. Med. 172, 562-577. https://doi.org/10.1016/j.freeradbiomed.2021.07.002
  47. Nakamura, T., Tu, S., Akhtar, M. W., Sunico, C. R., Okamoto, S. and Lipton, S. A. (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78, 596-614. https://doi.org/10.1016/j.neuron.2013.05.005
  48. Namkoong, S. and Kim, Y. M. (2010) Therapeutic application of nitric oxide in human diseases. Biomol. Ther. (Seoul) 18, 351-362. https://doi.org/10.4062/biomolther.2010.18.4.351
  49. Oates, J. C. (2010) The biology of reactive intermediates in systemic lupus erythematosus. Autoimmunity 43, 56-63. https://doi.org/10.3109/08916930903374683
  50. Ocampo, D. A. B., Paipilla, A. F., Marin, E., Vargas-Molina, S., Petro, J. L. and Perez-Idarraga, A. (2018) Dietary nitrate from beetroot juice for hypertension: a systematic review. Biomolecules 8, 134.
  51. Oh, C. K., Dolatabadi, N., Cieplak, P., Diaz-Meco, M. T., Moscat, J., Nolan, J. P., Nakamura, T. and Lipton, S. A. (2022) S-nitrosylation of p62 inhibits autophagic flux to promote α-synuclein secretion and spread in Parkinson's disease and lewy body dementia. J. Neurosci. 42, 3011-3024. https://doi.org/10.1523/JNEUROSCI.1508-21.2022
  52. Ormerod, A. D., Dwyer, C. M., Reid, A., Copeland, P. and Thompson, W. D. (1997) Inducible nitric oxide synthase demonstrated in allergic and irritant contact dermatitis. Acta Derm. Venereol. 77, 436-440. https://doi.org/10.2340/0001555577436440
  53. Patel, K. and Nixon, R. (2022) Irritant contact dermatitis - a review. Curr. Dermatol. Rep. 11, 41-51. https://doi.org/10.1007/s13671-021-00351-4
  54. Piacenza, L., Zeida, A., Trujillo, M. and Radi, R. (2022) The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol. Rev. 102, 1881-1906. https://doi.org/10.1152/physrev.00005.2022
  55. Plenkowska, J., Gabig-Ciminska, M. and Mozolewski, P. (2020) Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int. J. Mol. Sci. 21, 6206.
  56. Qian, J. and Fulton, D. J. R. (2012) Exogenous, but not endogenous nitric oxide inhibits adhesion molecule expression in human endothelial cells. Front. Physiol. 3, 3.
  57. Quillon, A., Fromy, B. and Debret, R. (2015) Endothelium microenvironment sensing leading to nitric oxide mediated vasodilation: a review of nervous and biomechanical signals. Nitric Oxide 45, 20-26. https://doi.org/10.1016/j.niox.2015.01.006
  58. Qureshi, A. A., Hosoi, J., Xu, S., Takashima, A., Granstein, R. D. and Lerner, E. A. (1996) Langerhans cells express inducible nitric oxide synthase and produce nitric oxide. J. Invest. Dermatol. 107, 815-821. https://doi.org/10.1111/1523-1747.ep12330572
  59. Ross, R. and Reske-Kunz, A. B. (2001) The role of NO in contact hypersensitivity. Int. Immunopharmacol. 1, 1469-1478. https://doi.org/10.1016/S1567-5769(01)00091-1
  60. Sadaf, S., Nagarkoti, S., Awasthi, D., Singh, A. K., Srivastava, R. N., Kumar, S., Srivastava, R. N., Kumar, S., Barthwal, M. K. and Dikshit, M. (2021) nNOS induction and NOSIP interaction impact granulopoiesis and neutrophil differentiation by modulating nitric oxide generation. Biochim. Biophys. Acta Mol. Cell Res. 1868, 119018.
  61. Sahin, S., Onder, M., Sancak, B., Bukan, N. and Gurer, M. A. (2001) The role of nitric oxide in allergic contact dermatitis. Arch. Dermatol. Res. 293, 214-217. https://doi.org/10.1007/s004030100207
  62. Sakai, M., Shimizu, Y., Nagatsu, I. and Ueda, H. (1996) Immunohistochemical localization of NO synthases in normal human skin and psoriatic skin. Arch. Dermatol. Res. 288, 625-627. https://doi.org/10.1007/BF02505267
  63. Sammicheli, S., Kuka, M., Di Lucia, P., De Oya, N. J., De Giovanni, M., Fioravanti, J., Cristofani, C., Maganuco, C. G., Fallet, B., Ganzer, L., Sironi, L., Mainetti, M., Ostuni, R., Larimore, K., Greenberg, P. D., de la Torre, J. C., Guidotti, L. G. and Iannacone, M. (2016) Inflammatory monocytes hinder antiviral B cell responses. Sci. Immunol. 1, eaah6789.
  64. Shen, T., Zhu, Q. X., Yang, S., Ding, R., Ma, T., Ye, L. P., Wang, L. J., Liang, Z. Z. and Zhang, X. J. (2007) Trichloroethylene induce nitric oxide production and nitric oxide synthase mRNA expression in cultured normal human epidermal keratinocytes. Toxicology 239, 186-194. https://doi.org/10.1016/j.tox.2007.07.006
  65. Shimizu, Y., Sakai, M., Umemura, Y. and Ueda, H. (1997) Immunohistochemical localization of nitric oxide synthase in normal human skin: expression of endothelial-type and inducible-type nitric oxide synthase in keratinocytes. J. Dermatol. 24, 80-87. https://doi.org/10.1111/j.1346-8138.1997.tb02748.x
  66. Solanki, K., Rajpoot, S., Bezsonov, E. E., Orekhov, A. N., Saluja, R., Wary, A., Axen, C., Wary, K. and Baig, M. S. (2022) The expanding roles of neuronal nitric oxide synthase (NOS1). PeerJ 10, e13651.
  67. Sowden, H. M., Naseem, K. M. and Tobin, D. J. (2005) Differential expression of nitric oxide synthases in human scalp epidermal and hair follicle pigmentary units: implications for regulation of melanogenesis. Br. J. Dermatol. 153, 301-309. https://doi.org/10.1111/j.1365-2133.2005.06718.x
  68. Suwanpradid, J., Shih, M., Pontius, L., Yang, B., Birukova, A., Guttman-Yassky, E., Corcoran, D. L., Que, L. G., Tighe, R. M. and MacLeod, A. S. (2017) Arginase1 deficiency in monocytes/macrophages upregulates inducible nitric oxide synthase to promote cutaneous contact hypersensitivity. J. Immunol. 199, 1827-1834. https://doi.org/10.4049/jimmunol.1700739
  69. Szabo, C., Ischiropoulos, H. and Radi, R. (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662-680. https://doi.org/10.1038/nrd2222
  70. Thwe, P. M. and Amiel, E. (2018) The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Lett. 412, 236-242. https://doi.org/10.1016/j.canlet.2017.10.032
  71. Vanhatalo, A., Blackwell, J. R., L'Heureux, J. E., Williams, D. W., Smith, A., van der Giezen, M., Winyard, P. G., Kelly, J. and Jones, A. M. (2018) Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic. Biol. Med. 124, 21-30. https://doi.org/10.1016/j.freeradbiomed.2018.05.078
  72. Vanhoutte, P. M., Zhao, Y., Xu, A. and Leung, S. W. S. (2016) Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ. Res. 119, 375-396. https://doi.org/10.1161/CIRCRESAHA.116.306531
  73. Wallengren, J. and Larsson, B. (2001) Nitric oxide participates in prick test and irritant patch test reactions in human skin. Arch. Dermatol. Res. 293, 121-125. https://doi.org/10.1007/s004030000198
  74. Wang, R., Ghahary, A., Shen, Y. J., Scott, P. G. and Tredget, E. E. (1996) Human dermal fibroblasts produce nitric oxide and express both constitutive and inducible nitric oxide synthase isoforms. J. Invest. Dermatol. 106, 419-427. https://doi.org/10.1111/1523-1747.ep12343428
  75. Xu, T. Y., Qing, S. L., Zhao, J. X., Song, J., Miao, Z. W., Li, J. X., Yang, F. Y., Zhao, H. Y., Zheng, S. L., Li, Z. Y., Wang, S. N. and Miao, C. Y. (2023) Metrnl deficiency retards skin wound healing in mice by inhibiting AKT/eNOS signaling and angiogenesis. Acta Pharmacol. Sin. doi: 10.1038/s41401-023-01090-x [Online ahead of print].
  76. Xue, Q., Yan, Y., Zhang, R. and Xiong, H. (2018) Regulation of iNOS on immune cells and its role in diseases. Int. J. Mol. Sci. 19, 3805.
  77. Yu, C., Fitzpatrick, A., Cong, D., Yao, C., Yoo, J., Turnbull, A., Schwarze, J., Norval, M., Howie, S. E. M., Weller, R. B. and Astier, A. L. (2017) Nitric oxide induces human CLA+CD25+Foxp3+ regulatory T cells with skin-homing potential. J. Allergy Clin. Immunol. 140, 1441-1444.e6. https://doi.org/10.1016/j.jaci.2017.05.023
  78. Yu, L. and Li, L. (2022) Potential biomarkers of atopic dermatitis. Front. Med. (Lausanne) 9, 1028694.
  79. Zhou, K. and Parker, J. D. (2019) The role of vascular endothelium in nitroglycerin-mediated vasodilation. Br. J. Clin. Pharmacol. 85, 377-384. https://doi.org/10.1111/bcp.13804