DOI QR코드

DOI QR Code

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

  • Kim, Tae Hoon (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Heung Kyu (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2014.04.29
  • Accepted : 2014.05.27
  • Published : 2014.06.30

Abstract

Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.

Keywords

References

  1. De Heer, H. J., H. Hammad, M. Kool, and B. N. Lambrecht. 2005. Dendritic cell subsets and immune regulation in the lung. Semin. Immunol. 17: 295-303. https://doi.org/10.1016/j.smim.2005.05.002
  2. Neyt, K. and B. N. Lambrecht. 2013. The role of lung dendritic cell subsets in immunity to respiratory viruses. Immunol. Rev. 255: 57-67. https://doi.org/10.1111/imr.12100
  3. Guilliams, M., B. N. Lambrecht, and H. Hammad. 2013. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol. 6: 464-473. https://doi.org/10.1038/mi.2013.14
  4. Johnson, T. R., C. N. Johnson, K. S. Corbett, G. C. Edwards, and B. S. Graham. 2011. Primary human mDC1, mDC2, and pDC dendritic cells are differentially infected and activated by respiratory syncytial virus. PLoS One 6: e16458. https://doi.org/10.1371/journal.pone.0016458
  5. Kim, T. H. and H. K. Lee. 2014. Innate immune recognition of respiratory syncytial virus infection. BMB Rep. 47; 184-191. https://doi.org/10.5483/BMBRep.2014.47.4.050
  6. Iwasaki, A. and P. S. Pillai. 2014. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14: 315-328. https://doi.org/10.1038/nri3665
  7. Guerrero-Plata, A., A. Casola, G. Suarez, X. Yu, L. Spetch, M. E. Peeples, and R. P. Garofalo. 2006. Differential response of dendritic cells to human metapneumovirus and respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 34: 320-329. https://doi.org/10.1165/rcmb.2005-0287OC
  8. Chang, J. 2011. Current progress on development of respiratory syncytial virus vaccine. BMB Rep. 44: 232-237. https://doi.org/10.5483/BMBRep.2011.44.4.232
  9. del Rio, M. L., G. Bernhardt, J. I. Rodriguez-Barbosa, and R. Forster. 2010. Development and functional specialization of $CD103^+$ dendritic cells. Immunol. Rev. 234: 268-281. https://doi.org/10.1111/j.0105-2896.2009.00874.x
  10. Helft, J., F. Ginhoux, M. Bogunovic, and M. Merad. 2010. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol. Rev. 234: 55-75. https://doi.org/10.1111/j.0105-2896.2009.00885.x
  11. Ginhoux, F., K. Liu, J. Helft, M. Bogunovic, M. Greter, D. Hashimoto, J. Price, N. Yin, J. Bromberg, S. A. Lira, E. R. Stanley, M. Nussenzweig, and M. Merad. 2009. The origin and development of nonlymphoid tissue $CD103^+$ DCs. J. Exp. Med. 206: 3115-3130. https://doi.org/10.1084/jem.20091756
  12. Zhan, Y., E. M. Carrington, A. van Nieuwenhuijze, S. Bedoui, S. Seah, Y. Xu, N. Wang, J. D. Mintern, J. A. Villadangos, I. P. Wicks, and A. M. Lew. 2011. GM-CSF increases cross-presentation and CD103 expression by mouse $CD8^+$ spleen dendritic cells. Eur. J. Immunol. 41: 2585-2595. https://doi.org/10.1002/eji.201141540
  13. Sathe, P., J. Pooley, D. Vremec, J. Mintern, J. O. Jin, L. Wu, J. Y. Kwak, J. A. Villadangos, and K. Shortman. 2011. The acquisition of antigen cross-presentation function by newly formed dendritic cells. J. Immunol. 186: 5184-5192. https://doi.org/10.4049/jimmunol.1002683
  14. Edelson, B. T., T. R. Bradstreet, W. Kc, K. Hildner, J. W. Herzog, J. Sim, J. H. Russell, T. L. Murphy, E. R. Unanue, and K. M. Murphy. 2011. Batf3-dependent CD11b(low/-) peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS One 6: e25660. https://doi.org/10.1371/journal.pone.0025660
  15. Greter, M., J. Helft, A. Chow, D. Hashimoto, A. Mortha, J. Agudo-Cantero, M. Bogunovic, E. L. Gautier, J. Miller, M. Leboeuf, G. Lu, C. Aloman, B. D. Brown, J. W. Pollard, H. Xiong, G. J. Randolph, J. E. Chipuk, P. S. Frenette, and M. Merad. 2012. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36: 1031-1046. https://doi.org/10.1016/j.immuni.2012.03.027
  16. Merad, M., P. Sathe, J. Helft, J. Miller, and A. Mortha. 2013. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31: 563-604. https://doi.org/10.1146/annurev-immunol-020711-074950
  17. Merad, M., F. Ginhoux, and M. Collin. 2008. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8: 935-947. https://doi.org/10.1038/nri2455
  18. Sung, S. S., S. M. Fu, C. E. Rose, Jr., F. Gaskin, S. T. Ju, and S. R. Beaty. 2006. A major lung CD103 $({\alpha}_E)-{\beta}_7$ integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 176: 2161-2172. https://doi.org/10.4049/jimmunol.176.4.2161
  19. Jahnsen, F. L., D. H. Strickland, J. A. Thomas, I. T. Tobagus, S. Napoli, G. R. Zosky, D. J. Turner, P. D. Sly, P. A. Stumbles, and P. G. Holt. 2006. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol. 177: 5861-5867. https://doi.org/10.4049/jimmunol.177.9.5861
  20. Chieppa, M., M. Rescigno, A. Y. Huang, and R. N. Germain. 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203: 2841-2852. https://doi.org/10.1084/jem.20061884
  21. Hammad, H. and B. N. Lambrecht. 2008. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat. Rev. Immunol. 8: 193-204. https://doi.org/10.1038/nri2275
  22. GeurtsvanKessel, C. H., M. A. Willart, L. S. van Rijt, F. Muskens, M. Kool, C. Baas, K. Thielemans, C. Bennett, B. E. Clausen, H. C. Hoogsteden, A. D. Osterhaus, G. F. Rimmelzwaan, and B. N. Lambrecht. 2008. Clearance of influenza virus from the lung depends on migratory $langerin^+\;CD11b^-$ but not plasmacytoid dendritic cells. J. Exp. Med. 205: 1621-1634. https://doi.org/10.1084/jem.20071365
  23. Lukens, M. V., D. Kruijsen, F. E. Coenjaerts, J. L. Kimpen, and G. M. van Bleek. 2009. Respiratory syncytial virus-induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node. J. Virol. 83: 7235-7243. https://doi.org/10.1128/JVI.00452-09
  24. Belz, G. T., C. M. Smith, L. Kleinert, P. Reading, A. Brooks, K. Shortman, F. R. Carbone, and W. R. Heath. 2004. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl. Acad. Sci. USA 101: 8670-8675. https://doi.org/10.1073/pnas.0402644101
  25. Hildner, K., B. T. Edelson, W. E. Purtha, M. Diamond, H. Matsushita, M. Kohyama, B. Calderon, B. U. Schraml, E. R. Unanue, M. S. Diamond, R. D. Schreiber, T. L. Murphy, and K. M. Murphy. 2008. Batf3 deficiency reveals a critical role for $CD8{\alpha}^+$ dendritic cells in cytotoxic T cell immunity. Science 322: 1097-1100. https://doi.org/10.1126/science.1164206
  26. Edelson, B. T., W. Kc, R. Juang, M. Kohyama, L. A. Benoit, P. A. Klekotka, C. Moon, J. C. Albring, W. Ise, D. G. Michael, D. Bhattacharya, T. S. Stappenbeck, M. J. Holtzman, S. S. Sung, T. L. Murphy, K. Hildner, and K. M. Murphy. 2010. Peripheral $CD103^+$ dendritic cells form a unified subset developmentally related to $CD8{\alpha}^+$ conventional dendritic cells. J. Exp. Med. 207: 823-836. https://doi.org/10.1084/jem.20091627
  27. Miller, J. C., B. D. Brown, T. Shay, E. L. Gautier, V. Jojic, A. Cohain, G. Pandey, M. Leboeuf, K. G. Elpek, J. Helft, D. Hashimoto, A. Chow, J. Price, M. Greter, M. Bogunovic, A. Bellemare-Pelletier, P. S. Frenette, G. J. Randolph, S. J. Turley, M. Merad, and the Immunological Genome Consortium. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13: 888-899. https://doi.org/10.1038/ni.2370
  28. Edwards, A. D., S. S. Diebold, E. M. Slack, H. Tomizawa, H. Hemmi, T. Kaisho, S. Akira, and C. Reis e Sousa. 2003. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by $CD8{\alpha}^+$ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33: 827-833. https://doi.org/10.1002/eji.200323797
  29. Yarovinsky, F., D. Zhang, J. F. Andersen, G. L. Bannenberg, C. N. Serhan, M. S. Hayden, S. Hieny, F. S. Sutterwala, R. A. Flavell, S. Ghosh, and A. Sher. 2005. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308: 1626-1629. https://doi.org/10.1126/science.1109893
  30. Sancho, D., O. P. Joffre, A. M. Keller, N. C. Rogers, D. Martinez, P. Hernanz-Falcon, I. Rosewell, and C. Reis e Sousa. 2009. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458: 899-903. https://doi.org/10.1038/nature07750
  31. Davey, G. M., M. Wojtasiak, A. I. Proietto, F. R. Carbone, W. R. Heath, and S. Bedoui. 2010. Cutting edge: priming of CD8 T cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J. Immunol. 184: 2243-2246. https://doi.org/10.4049/jimmunol.0903013
  32. Desch, A. N., G. J. Randolph, K. Murphy, E. L. Gautier, R. M. Kedl, M. H. Lahoud, I. Caminschi, K. Shortman, P. M. Henson, and C. V. Jakubzick. 2011. $CD103^+$ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208: 1789-1797. https://doi.org/10.1084/jem.20110538
  33. Helft, J., B. Manicassamy, P. Guermonprez, D. Hashimoto, A. Silvin, J. Agudo, B. D. Brown, M. Schmolke, J. C. Miller, M. Leboeuf, K. M. Murphy, A. Garcia-Sastre, and M. Merad. 2012. Cross-presenting $CD103^+$ dendritic cells are protected from influenza virus infection. J. Clin. Invest. 122: 4037-4047. https://doi.org/10.1172/JCI60659
  34. Igyarto, B. Z., K. Haley, D. Ortner, A. Bobr, M. Gerami-Nejad, B. T. Edelson, S. M. Zurawski, B. Malissen, G. Zurawski, J. Berman, and D. H. Kaplan. 2011. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35: 260-272. https://doi.org/10.1016/j.immuni.2011.06.005
  35. King, I. L., M. A. Kroenke, and B. M. Segal. 2010. GM-CSF-dependent, $CD103^+$ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J. Exp. Med. 207: 953-961. https://doi.org/10.1084/jem.20091844
  36. Brewig, N., A. Kissenpfennig, B. Malissen, A. Veit, T. Bickert, B. Fleischer, S. Mostbock, and U. Ritter. 2009. Priming of $CD8^+$ and $CD4^+$ T cells in experimental leishmaniasis is initiated by different dendritic cell subtypes. J. Immunol. 182: 774-783. https://doi.org/10.4049/jimmunol.182.2.774
  37. Liu, K., J. Idoyaga, A. Charalambous, S. Fujii, A. Bonito, J. Mordoh, R. Wainstok, X. F. Bai, Y. Liu, and R. M. Steinman. 2005. Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J. Exp. Med. 202: 1507-1516. https://doi.org/10.1084/jem.20050956
  38. Liu, K., T. Iyoda, M. Saternus, Y. Kimura, K. Inaba, and R. M. Steinman. 2002. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196: 1091-1097. https://doi.org/10.1084/jem.20021215
  39. Qiu, C. H., Y. Miyake, H. Kaise, H. Kitamura, O. Ohara, and M. Tanaka. 2009. Novel subset of $CD8{\alpha}^+$ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J. Immunol. 182: 4127-4136. https://doi.org/10.4049/jimmunol.0803364
  40. Schulz, O., E. Jaensson, E. K. Persson, X. Liu, T. Worbs, W. W. Agace, and O. Pabst. 2009. Intestinal $CD103^+$, but not $CX3CR1^+$, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206: 3101-3114. https://doi.org/10.1084/jem.20091925
  41. Langlet, C., S. Tamoutounour, S. Henri, H. Luche, L. Ardouin, C. Gregoire, B. Malissen, and M. Guilliams. 2012. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 188: 1751-1760. https://doi.org/10.4049/jimmunol.1102744
  42. Plantinga, M., M. Guilliams, M. Vanheerswynghels, K. Deswarte, F. Branco-Madeira, W. Toussaint, L. Vanhoutte, K. Neyt, N. Killeen, B. Malissen, H. Hammad, and B. N. Lambrecht. 2013. Conventional and monocyte-derived $CD11b^+$ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38: 322-335. https://doi.org/10.1016/j.immuni.2012.10.016
  43. Luber, C. A., J. Cox, H. Lauterbach, B. Fancke, M. Selbach, J. Tschopp, S. Akira, M. Wiegand, H. Hochrein, M. O'Keeffe, and M. Mann. 2010. Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32: 279-289. https://doi.org/10.1016/j.immuni.2010.01.013
  44. Beaty, S. R., C. E. Rose, Jr., and S. S. Sung. 2007. Diverse and potent chemokine production by lung $CD11b^{high}$ dendritic cells in homeostasis and in allergic lung inflammation. J. Immunol. 178: 1882-1895. https://doi.org/10.4049/jimmunol.178.3.1882
  45. Kim, T. S. and T. J. Braciale. 2009. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic $CD8^+$ T cell responses. PLoS One 4: e4204. https://doi.org/10.1371/journal.pone.0004204
  46. Ballesteros-Tato, A., B. Leon, F. E. Lund, and T. D. Randall. 2010. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control $CD8^+$ T cell responses to influenza. Nat. Immunol. 11: 216-224. https://doi.org/10.1038/ni.1838
  47. Plantinga, M., H. Hammad, and B. N. Lambrecht. 2010. Origin and functional specializations of DC subsets in the lung. Eur. J. Immunol. 40: 2112-2118. https://doi.org/10.1002/eji.201040562
  48. Bonasio, R., M. L. Scimone, P. Schaerli, N. Grabie, A. H. Lichtman, and U. H. von Andrian. 2006. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol. 7: 1092-1100. https://doi.org/10.1038/ni1385
  49. Proietto, A. I., S. van Dommelen, P. Zhou, A. Rizzitelli, A. D'Amico, R. J. Steptoe, S. H. Naik, M. H. Lahoud, Y. Liu, P. Zheng, K. Shortman, and L. Wu. 2008. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc. Natl. Acad. Sci. USA 105: 19869-19874. https://doi.org/10.1073/pnas.0810268105
  50. Sun, C. M., J. A. Hall, R. B. Blank, N. Bouladoux, M. Oukka, J. R. Mora, and Y. Belkaid. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204: 1775-1785. https://doi.org/10.1084/jem.20070602
  51. Coombes, J. L., K. R. Siddiqui, C. V. Arancibia-Carcamo, J. Hall, C. M. Sun, Y. Belkaid, and F. Powrie. 2007. A functionally specialized population of mucosal $CD103^+$ DCs induces $Foxp3^+$ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204: 1757-1764. https://doi.org/10.1084/jem.20070590
  52. Hammad, H., M. Chieppa, F. Perros, M. A. Willart, R. N. Germain, and B. N. Lambrecht. 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15: 410-416. https://doi.org/10.1038/nm.1946
  53. GeurtsvanKessel, C. H., M. A. Willart, I. M. Bergen, L. S. van Rijt, F. Muskens, D. Elewaut, A. D. Osterhaus, R. Hendriks, G. F. Rimmelzwaan, and B. N. Lambrecht. 2009. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med. 206: 2339-2349. https://doi.org/10.1084/jem.20090410
  54. Halle, S., H. C. Dujardin, N. Bakocevic, H. Fleige, H. Danzer, S. Willenzon, Y. Suezer, G. Hammerling, N. Garbi, G. Sutter, T. Worbs, and R. Forster. 2009. Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. J. Exp. Med. 206: 2593-2601. https://doi.org/10.1084/jem.20091472
  55. Reizis, B., A. Bunin, H. S. Ghosh, K. L. Lewis, and V. Sisirak. 2011. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29: 163-183. https://doi.org/10.1146/annurev-immunol-031210-101345
  56. Cisse, B., M. L. Caton, M. Lehner, T. Maeda, S. Scheu, R. Locksley, D. Holmberg, C. Zweier, N. S. den Hollander, S. G. Kant, W. Holter, A. Rauch, Y. Zhuang, and B. Reizis. 2008. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135: 37-48. https://doi.org/10.1016/j.cell.2008.09.016
  57. Reizis, B. 2010. Regulation of plasmacytoid dendritic cell development. Curr. Opin. Immunol. 22: 206-211. https://doi.org/10.1016/j.coi.2010.01.005
  58. Cella, M., F. Facchetti, A. Lanzavecchia, and M. Colonna. 2000. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat. Immunol. 1: 305-310. https://doi.org/10.1038/79747
  59. Fonteneau, J. F., M. Gilliet, M. Larsson, I. Dasilva, C. Munz, Y. J. Liu, and N. Bhardwaj. 2003. Activation of influenza virus-specific $CD4^+$ and $CD8^+$ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 101: 3520-3526. https://doi.org/10.1182/blood-2002-10-3063
  60. Hoeffel, G., A. C. Ripoche, D. Matheoud, M. Nascimbeni, N. Escriou, P. Lebon, F. Heshmati, J. G. Guillet, M. Gannage, S. Caillat-Zucman, N. Casartelli, O. Schwartz, H. De la Salle, D. Hanau, A. Hosmalin, and C. Maranon. 2007. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 27: 481-492. https://doi.org/10.1016/j.immuni.2007.07.021
  61. Boogaard, I., M. van Oosten, L. S. van Rijt, F. Muskens, T. G. Kimman, B. N. Lambrecht, and A. M. Buisman. 2007. Respiratory syncytial virus differentially activates murine myeloid and plasmacytoid dendritic cells. Immunology 122: 65-72. https://doi.org/10.1111/j.1365-2567.2007.02613.x
  62. Smit, J. J., B. D. Rudd, and N. W. Lukacs. 2006. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med. 203: 1153-1159. https://doi.org/10.1084/jem.20052359
  63. Wang, H., N. Peters, and J. Schwarze. 2006. Plasmacytoid dendritic cells limit viral replication, pulmonary inflammation, and airway hyperresponsiveness in respiratory syncytial virus infection. J. Immunol. 177: 6263-6270. https://doi.org/10.4049/jimmunol.177.9.6263
  64. Wolf, A. I., D. Buehler, S. E. Hensley, L. L. Cavanagh, E. J. Wherry, P. Kastner, S. Chan, and W. Weninger. 2009. Plasmacytoid dendritic cells are dispensable during primary influenza virus infection. J. Immunol. 182: 871-879. https://doi.org/10.4049/jimmunol.182.2.871
  65. Swiecki, M., S. Gilfillan, W. Vermi, Y. Wang, and M. Colonna. 2010. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and $CD8^+$ T cell accrual. Immunity 33: 955-966. https://doi.org/10.1016/j.immuni.2010.11.020
  66. Swiecki, M., Y. Wang, S. Gilfillan, and M. Colonna. 2013. Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog. 9: e1003728. https://doi.org/10.1371/journal.ppat.1003728
  67. Dominguez, P. M. and C. Ardavin. 2010. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol. Rev. 234: 90-104. https://doi.org/10.1111/j.0105-2896.2009.00876.x
  68. Nagai, Y., K. P. Garrett, S. Ohta, U. Bahrun, T. Kouro, S. Akira, K. Takatsu, and P. W. Kincade. 2006. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24: 801-812. https://doi.org/10.1016/j.immuni.2006.04.008
  69. Takizawa, H., S. Boettcher, and M. G. Manz. 2012. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119: 2991-3002. https://doi.org/10.1182/blood-2011-12-380113
  70. Leon, B., M. Lopez-Bravo, and C. Ardavin. 2007. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26: 519-531. https://doi.org/10.1016/j.immuni.2007.01.017
  71. Cheong, C., I. Matos, J. H. Choi, D. B. Dandamudi, E. Shrestha, M. P. Longhi, K. L. Jeffrey, R. M. Anthony, C. Kluger, G. Nchinda, H. Koh, A. Rodriguez, J. Idoyaga, M. Pack, K. Velinzon, C. G. Park, and R. M. Steinman. 2010. Microbial stimulation fully differentiates monocytes to DC-SIGN/$CD209^+$ dendritic cells for immune T cell areas. Cell 143: 416-429. https://doi.org/10.1016/j.cell.2010.09.039
  72. Sallusto, F. and A. Lanzavecchia. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179: 1109-1118. https://doi.org/10.1084/jem.179.4.1109
  73. Naik, S. H., D. Metcalf, A. van Nieuwenhuijze, I. Wicks, L. Wu, M. O'Keeffe, and K. Shortman. 2006. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7: 663-671. https://doi.org/10.1038/ni1340
  74. Dudziak, D., A. O. Kamphorst, G. F. Heidkamp, V. R. Buchholz, C. Trumpfheller, S. Yamazaki, C. Cheong, K. Liu, H. W. Lee, C. G. Park, R. M. Steinman, and M. C. Nussenzweig. 2007. Differential antigen processing by dendritic cell subsets in vivo. Science 315: 107-111. https://doi.org/10.1126/science.1136080
  75. Bogunovic, M., F. Ginhoux, J. Helft, L. Shang, D. Hashimoto, M. Greter, K. Liu, C. Jakubzick, M. A. Ingersoll, M. Leboeuf, E. R. Stanley, M. Nussenzweig, S. A. Lira, G. J. Randolph, and M. Merad. 2009. Origin of the lamina propria dendritic cell network. Immunity 31: 513-525. https://doi.org/10.1016/j.immuni.2009.08.010
  76. Varol, C., A. Vallon-Eberhard, E. Elinav, T. Aychek, Y. Shapira, H. Luche, H. J. Fehling, W. D. Hardt, G. Shakhar, and S. Jung. 2009. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31: 502-512. https://doi.org/10.1016/j.immuni.2009.06.025
  77. Serbina, N. V., T. P. Salazar-Mather, C. A. Biron, W. A. Kuziel, and E. G. Pamer. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19: 59-70. https://doi.org/10.1016/S1074-7613(03)00171-7
  78. Satpathy, A. T., W. Kc, J. C. Albring, B. T. Edelson, N. M. Kretzer, D. Bhattacharya, T. L. Murphy, and K. M. Murphy. 2012. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209: 1135-1152. https://doi.org/10.1084/jem.20120030
  79. Meredith, M. M., K. Liu, G. Darrasse-Jeze, A. O. Kamphorst, H. A. Schreiber, P. Guermonprez, J. Idoyaga, C. Cheong, K. H. Yao, R. E. Niec, and M. C. Nussenzweig. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209: 1153-1165. https://doi.org/10.1084/jem.20112675
  80. Lin, K. L., Y. Suzuki, H. Nakano, E. Ramsburg, and M. D. Gunn. 2008. $CCR2^+$ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 180: 2562-2572. https://doi.org/10.4049/jimmunol.180.4.2562
  81. Seo, S. U., H. J. Kwon, H. J. Ko, Y. H. Byun, B. L. Seong, S. Uematsu, S. Akira, and M. N. Kweon. 2011. Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog. 7: e1001304. https://doi.org/10.1371/journal.ppat.1001304
  82. Cao, W., A. K. Taylor, R. E. Biber, W. G. Davis, J. H. Kim, A. J. Reber, T. Chirkova, J. A. De La Cruz, A. Pandey, P. Ranjan, J. M. Katz, S. Gangappa, and S. Sambhara. 2012. Rapid differentiation of monocytes into type I IFN-producing myeloid dendritic cells as an antiviral strategy against influenza virus infection. J. Immunol. 189: 2257-2265. https://doi.org/10.4049/jimmunol.1200168
  83. Hou, W., J. S. Gibbs, X. Lu, C. B. Brooke, D. Roy, R. L. Modlin, J. R. Bennink, and J. W. Yewdell. 2012. Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells. Blood 119: 3128-3131. https://doi.org/10.1182/blood-2011-09-379479
  84. Willart, M. A., H. Jan de Heer, H. Hammad, T. Soullie, K. Deswarte, B. E. Clausen, L. Boon, H. C. Hoogsteden, and B. N. Lambrecht. 2009. The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen. J. Exp. Med. 206: 2823-2835. https://doi.org/10.1084/jem.20082401
  85. Iijima, N., L. M. Mattei, and A. Iwasaki. 2011. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc. Natl. Acad. Sci. USA 108: 284-289. https://doi.org/10.1073/pnas.1005201108
  86. Soudja, S. M., A. L. Ruiz, J. C. Marie, and G. Lauvau. 2012. Inflammatory monocytes activate memory $CD8^+$ T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37: 549-562. https://doi.org/10.1016/j.immuni.2012.05.029
  87. Waskow, C., K. Liu, G. Darrasse-Jeze, P. Guermonprez, F. Ginhoux, M. Merad, T. Shengelia, K. Yao, and M. Nussenzweig. 2008. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9: 676-683. https://doi.org/10.1038/ni.1615
  88. Idoyaga, J., N. Suda, K. Suda, C. G. Park, and R. M. Steinman. 2009. Antibody to Langerin/CD207 localizes large numbers of $CD8{\alpha}^+$ dendritic cells to the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. USA 106: 1524-1529. https://doi.org/10.1073/pnas.0812247106
  89. Kang, S. J. 2012. The bloodline of $CD8{\alpha}^+$ dendritic cells. Mol. Cells 34: 219-229. https://doi.org/10.1007/s10059-012-0058-6

Cited by

  1. Epithelial Barrier Function and Immunity in Asthma vol.11, pp.suppl5, 2014, https://doi.org/10.1513/annalsats.201407-304aw
  2. The respiratory microbiome and innate immunity in asthma vol.21, pp.1, 2014, https://doi.org/10.1097/mcp.0000000000000124
  3. Infection with a Mouse-Adapted Strain of the 2009 Pandemic Virus Causes a Highly Severe Disease Associated with an Impaired T Cell Response vol.10, pp.9, 2014, https://doi.org/10.1371/journal.pone.0138055
  4. CD103 + Conventional Dendritic Cells Are Critical for TLR7/9-Dependent Host Defense against Histoplasma capsulatum , an Endemic Fungal Pathogen of Humans vol.12, pp.7, 2014, https://doi.org/10.1371/journal.ppat.1005749
  5. Balancing Immune Protection and Immune Pathology by CD8 + T-Cell Responses to Influenza Infection vol.7, pp.None, 2014, https://doi.org/10.3389/fimmu.2016.00025
  6. The development and function of dendritic cell populations and their regulation by miRNAs vol.8, pp.7, 2014, https://doi.org/10.1007/s13238-017-0398-2
  7. Helper T Cell Responses to Respiratory Viruses in the Lung: Development, Virus Suppression, and Pathogenesis vol.30, pp.6, 2014, https://doi.org/10.1089/vim.2017.0018
  8. Transient Depletion of CD169 + Cells Contributes to Impaired Early Protection and Effector CD8 + T Cell Recruitment against Mucosal Respiratory Syncytial Virus Infection vol.8, pp.None, 2014, https://doi.org/10.3389/fimmu.2017.00819
  9. Pulmonary immunity to viruses vol.131, pp.14, 2014, https://doi.org/10.1042/cs20160259
  10. Dendritic Cell Trafficking and Function in Rare Lung Diseases vol.57, pp.4, 2017, https://doi.org/10.1165/rcmb.2017-0051ps
  11. Pandemic 2009 H1N1 Influenza Venus reporter virus reveals broad diversity of MHC class II-positive antigen-bearing cells following infection in vivo vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-11313-x
  12. Effects of corticosteroid plus long-acting beta 2 -agonist on the expression of PD-L1 in double-stranded RNA-induced lung inflammation in mice vol.14, pp.None, 2017, https://doi.org/10.1186/s12950-017-0149-4
  13. The role of respiratory epithelium in host defence against influenza virus infection vol.41, pp.4, 2018, https://doi.org/10.1016/j.bj.2018.08.004
  14. The CD8 T Cell Response to Respiratory Virus Infections vol.9, pp.None, 2014, https://doi.org/10.3389/fimmu.2018.00678
  15. Comparative Analysis of Inflammatory Cytokine Release and Alveolar Epithelial Barrier Invasion in a Transwell ® Bilayer Model of Mucormycosis vol.9, pp.None, 2014, https://doi.org/10.3389/fmicb.2018.03204
  16. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung vol.5, pp.1, 2014, https://doi.org/10.1002/reg2.97
  17. Batf3-Dependent Dendritic Cells Promote Optimal CD8 T Cell Responses against Respiratory Poxvirus Infection vol.92, pp.16, 2018, https://doi.org/10.1128/jvi.00495-18
  18. IFNβ inhibits the development of allergen tolerance and is conducive to the development of asthma on subsequent allergen exposure vol.96, pp.8, 2014, https://doi.org/10.1111/imcb.12050
  19. The Role of the Microbiome in Asthma: The Gut–Lung Axis vol.20, pp.1, 2014, https://doi.org/10.3390/ijms20010123
  20. Differential Role of Anti-Viral Sensing Pathway for the Production of Type I Interferon β in Dendritic Cells and Macrophages Against Respiratory Syncytial Virus A2 Strain Infection vol.11, pp.1, 2014, https://doi.org/10.3390/v11010062
  21. Immune-Modulation by the Human Respiratory Syncytial Virus: Focus on Dendritic Cells vol.10, pp.None, 2014, https://doi.org/10.3389/fimmu.2019.00810
  22. Material design for lymph node drug delivery vol.4, pp.6, 2019, https://doi.org/10.1038/s41578-019-0110-7
  23. Plasmacytoid Dendritic Cells Contribute to the Production of IFN-β via TLR7-MyD88-Dependent Pathway and CTL Priming during Respiratory Syncytial Virus Infection vol.11, pp.8, 2014, https://doi.org/10.3390/v11080730
  24. The Importance of Vaccinating Children and Pregnant Women against Influenza Virus Infection vol.8, pp.4, 2014, https://doi.org/10.3390/pathogens8040265
  25. Perspectives of treatment with probiotics in acute respiratory infections vol.29, pp.5, 2019, https://doi.org/10.18093/0869-0189-2019-29-5-612-619
  26. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection vol.11, pp.None, 2014, https://doi.org/10.3389/fimmu.2020.581750
  27. From the Role of Microbiota in Gut-Lung Axis to SARS-CoV-2 Pathogenesis vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6611222
  28. The Role of Innate Immunity in Pulmonary Infections vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/6646071
  29. Macrophages and Dendritic Cells Are Not the Major Source of Pro-Inflammatory Cytokines Upon SARS-CoV-2 Infection vol.12, pp.None, 2014, https://doi.org/10.3389/fimmu.2021.647824
  30. Nutritional approach for increasing public health during pandemic of COVID-19: A comprehensive review of antiviral nutrients and nutraceuticals vol.11, pp.2, 2014, https://doi.org/10.34172/hpp.2021.17
  31. The interplay between airway epithelium and the immune system – A primer for the respiratory clinician vol.38, pp.None, 2014, https://doi.org/10.1016/j.prrv.2021.03.002
  32. Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic-Experience and Outlines vol.18, pp.24, 2021, https://doi.org/10.3390/ijerph182413173
  33. Human lung cDC1 drive increased perforin-mediated NK cytotoxicity in chronic obstructive pulmonary disease vol.321, pp.6, 2014, https://doi.org/10.1152/ajplung.00322.2020