Browse > Article
http://dx.doi.org/10.4110/in.2014.14.3.128

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection  

Kim, Tae Hoon (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Lee, Heung Kyu (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
IMMUNE NETWORK / v.14, no.3, 2014 , pp. 128-137 More about this Journal
Abstract
Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.
Keywords
Dendritic cells; Influenza; Respiratory syncytial virus; Lung; Infection;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Boogaard, I., M. van Oosten, L. S. van Rijt, F. Muskens, T. G. Kimman, B. N. Lambrecht, and A. M. Buisman. 2007. Respiratory syncytial virus differentially activates murine myeloid and plasmacytoid dendritic cells. Immunology 122: 65-72.   DOI   ScienceOn
2 Smit, J. J., B. D. Rudd, and N. W. Lukacs. 2006. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med. 203: 1153-1159.   DOI   ScienceOn
3 Bonasio, R., M. L. Scimone, P. Schaerli, N. Grabie, A. H. Lichtman, and U. H. von Andrian. 2006. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol. 7: 1092-1100.   DOI   ScienceOn
4 Proietto, A. I., S. van Dommelen, P. Zhou, A. Rizzitelli, A. D'Amico, R. J. Steptoe, S. H. Naik, M. H. Lahoud, Y. Liu, P. Zheng, K. Shortman, and L. Wu. 2008. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc. Natl. Acad. Sci. USA 105: 19869-19874.   DOI   ScienceOn
5 Sun, C. M., J. A. Hall, R. B. Blank, N. Bouladoux, M. Oukka, J. R. Mora, and Y. Belkaid. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204: 1775-1785.   DOI   ScienceOn
6 Coombes, J. L., K. R. Siddiqui, C. V. Arancibia-Carcamo, J. Hall, C. M. Sun, Y. Belkaid, and F. Powrie. 2007. A functionally specialized population of mucosal $CD103^+$ DCs induces $Foxp3^+$ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204: 1757-1764.   DOI   ScienceOn
7 Hammad, H., M. Chieppa, F. Perros, M. A. Willart, R. N. Germain, and B. N. Lambrecht. 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15: 410-416.   DOI   ScienceOn
8 GeurtsvanKessel, C. H., M. A. Willart, I. M. Bergen, L. S. van Rijt, F. Muskens, D. Elewaut, A. D. Osterhaus, R. Hendriks, G. F. Rimmelzwaan, and B. N. Lambrecht. 2009. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med. 206: 2339-2349.   DOI   ScienceOn
9 Halle, S., H. C. Dujardin, N. Bakocevic, H. Fleige, H. Danzer, S. Willenzon, Y. Suezer, G. Hammerling, N. Garbi, G. Sutter, T. Worbs, and R. Forster. 2009. Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. J. Exp. Med. 206: 2593-2601.   DOI   ScienceOn
10 Schulz, O., E. Jaensson, E. K. Persson, X. Liu, T. Worbs, W. W. Agace, and O. Pabst. 2009. Intestinal $CD103^+$, but not $CX3CR1^+$, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206: 3101-3114.   DOI   ScienceOn
11 Langlet, C., S. Tamoutounour, S. Henri, H. Luche, L. Ardouin, C. Gregoire, B. Malissen, and M. Guilliams. 2012. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 188: 1751-1760.   DOI   ScienceOn
12 Plantinga, M., M. Guilliams, M. Vanheerswynghels, K. Deswarte, F. Branco-Madeira, W. Toussaint, L. Vanhoutte, K. Neyt, N. Killeen, B. Malissen, H. Hammad, and B. N. Lambrecht. 2013. Conventional and monocyte-derived $CD11b^+$ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38: 322-335.   DOI   ScienceOn
13 Luber, C. A., J. Cox, H. Lauterbach, B. Fancke, M. Selbach, J. Tschopp, S. Akira, M. Wiegand, H. Hochrein, M. O'Keeffe, and M. Mann. 2010. Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32: 279-289.   DOI   ScienceOn
14 Beaty, S. R., C. E. Rose, Jr., and S. S. Sung. 2007. Diverse and potent chemokine production by lung $CD11b^{high}$ dendritic cells in homeostasis and in allergic lung inflammation. J. Immunol. 178: 1882-1895.   DOI
15 Kim, T. S. and T. J. Braciale. 2009. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic $CD8^+$ T cell responses. PLoS One 4: e4204.   DOI   ScienceOn
16 Ballesteros-Tato, A., B. Leon, F. E. Lund, and T. D. Randall. 2010. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control $CD8^+$ T cell responses to influenza. Nat. Immunol. 11: 216-224.   DOI   ScienceOn
17 King, I. L., M. A. Kroenke, and B. M. Segal. 2010. GM-CSF-dependent, $CD103^+$ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J. Exp. Med. 207: 953-961.   DOI   ScienceOn
18 Plantinga, M., H. Hammad, and B. N. Lambrecht. 2010. Origin and functional specializations of DC subsets in the lung. Eur. J. Immunol. 40: 2112-2118.   DOI   ScienceOn
19 Helft, J., B. Manicassamy, P. Guermonprez, D. Hashimoto, A. Silvin, J. Agudo, B. D. Brown, M. Schmolke, J. C. Miller, M. Leboeuf, K. M. Murphy, A. Garcia-Sastre, and M. Merad. 2012. Cross-presenting $CD103^+$ dendritic cells are protected from influenza virus infection. J. Clin. Invest. 122: 4037-4047.   DOI   ScienceOn
20 Igyarto, B. Z., K. Haley, D. Ortner, A. Bobr, M. Gerami-Nejad, B. T. Edelson, S. M. Zurawski, B. Malissen, G. Zurawski, J. Berman, and D. H. Kaplan. 2011. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35: 260-272.   DOI   ScienceOn
21 Brewig, N., A. Kissenpfennig, B. Malissen, A. Veit, T. Bickert, B. Fleischer, S. Mostbock, and U. Ritter. 2009. Priming of $CD8^+$ and $CD4^+$ T cells in experimental leishmaniasis is initiated by different dendritic cell subtypes. J. Immunol. 182: 774-783.   DOI
22 Liu, K., J. Idoyaga, A. Charalambous, S. Fujii, A. Bonito, J. Mordoh, R. Wainstok, X. F. Bai, Y. Liu, and R. M. Steinman. 2005. Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J. Exp. Med. 202: 1507-1516.   DOI   ScienceOn
23 Liu, K., T. Iyoda, M. Saternus, Y. Kimura, K. Inaba, and R. M. Steinman. 2002. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196: 1091-1097.   DOI   ScienceOn
24 Qiu, C. H., Y. Miyake, H. Kaise, H. Kitamura, O. Ohara, and M. Tanaka. 2009. Novel subset of $CD8{\alpha}^+$ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J. Immunol. 182: 4127-4136.   DOI   ScienceOn
25 Sancho, D., O. P. Joffre, A. M. Keller, N. C. Rogers, D. Martinez, P. Hernanz-Falcon, I. Rosewell, and C. Reis e Sousa. 2009. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458: 899-903.   DOI   ScienceOn
26 Miller, J. C., B. D. Brown, T. Shay, E. L. Gautier, V. Jojic, A. Cohain, G. Pandey, M. Leboeuf, K. G. Elpek, J. Helft, D. Hashimoto, A. Chow, J. Price, M. Greter, M. Bogunovic, A. Bellemare-Pelletier, P. S. Frenette, G. J. Randolph, S. J. Turley, M. Merad, and the Immunological Genome Consortium. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13: 888-899.   DOI   ScienceOn
27 Edwards, A. D., S. S. Diebold, E. M. Slack, H. Tomizawa, H. Hemmi, T. Kaisho, S. Akira, and C. Reis e Sousa. 2003. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by $CD8{\alpha}^+$ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33: 827-833.   DOI   ScienceOn
28 Yarovinsky, F., D. Zhang, J. F. Andersen, G. L. Bannenberg, C. N. Serhan, M. S. Hayden, S. Hieny, F. S. Sutterwala, R. A. Flavell, S. Ghosh, and A. Sher. 2005. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308: 1626-1629.   DOI   ScienceOn
29 Davey, G. M., M. Wojtasiak, A. I. Proietto, F. R. Carbone, W. R. Heath, and S. Bedoui. 2010. Cutting edge: priming of CD8 T cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J. Immunol. 184: 2243-2246.   DOI
30 Desch, A. N., G. J. Randolph, K. Murphy, E. L. Gautier, R. M. Kedl, M. H. Lahoud, I. Caminschi, K. Shortman, P. M. Henson, and C. V. Jakubzick. 2011. $CD103^+$ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208: 1789-1797.   DOI   ScienceOn
31 GeurtsvanKessel, C. H., M. A. Willart, L. S. van Rijt, F. Muskens, M. Kool, C. Baas, K. Thielemans, C. Bennett, B. E. Clausen, H. C. Hoogsteden, A. D. Osterhaus, G. F. Rimmelzwaan, and B. N. Lambrecht. 2008. Clearance of influenza virus from the lung depends on migratory $langerin^+\;CD11b^-$ but not plasmacytoid dendritic cells. J. Exp. Med. 205: 1621-1634.   DOI   ScienceOn
32 Edelson, B. T., W. Kc, R. Juang, M. Kohyama, L. A. Benoit, P. A. Klekotka, C. Moon, J. C. Albring, W. Ise, D. G. Michael, D. Bhattacharya, T. S. Stappenbeck, M. J. Holtzman, S. S. Sung, T. L. Murphy, K. Hildner, and K. M. Murphy. 2010. Peripheral $CD103^+$ dendritic cells form a unified subset developmentally related to $CD8{\alpha}^+$ conventional dendritic cells. J. Exp. Med. 207: 823-836.   DOI   ScienceOn
33 Lukens, M. V., D. Kruijsen, F. E. Coenjaerts, J. L. Kimpen, and G. M. van Bleek. 2009. Respiratory syncytial virus-induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node. J. Virol. 83: 7235-7243.   DOI   ScienceOn
34 Belz, G. T., C. M. Smith, L. Kleinert, P. Reading, A. Brooks, K. Shortman, F. R. Carbone, and W. R. Heath. 2004. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl. Acad. Sci. USA 101: 8670-8675.   DOI   ScienceOn
35 Hildner, K., B. T. Edelson, W. E. Purtha, M. Diamond, H. Matsushita, M. Kohyama, B. Calderon, B. U. Schraml, E. R. Unanue, M. S. Diamond, R. D. Schreiber, T. L. Murphy, and K. M. Murphy. 2008. Batf3 deficiency reveals a critical role for $CD8{\alpha}^+$ dendritic cells in cytotoxic T cell immunity. Science 322: 1097-1100.   DOI   ScienceOn
36 Greter, M., J. Helft, A. Chow, D. Hashimoto, A. Mortha, J. Agudo-Cantero, M. Bogunovic, E. L. Gautier, J. Miller, M. Leboeuf, G. Lu, C. Aloman, B. D. Brown, J. W. Pollard, H. Xiong, G. J. Randolph, J. E. Chipuk, P. S. Frenette, and M. Merad. 2012. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36: 1031-1046.   DOI   ScienceOn
37 Merad, M., P. Sathe, J. Helft, J. Miller, and A. Mortha. 2013. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31: 563-604.   DOI   ScienceOn
38 Merad, M., F. Ginhoux, and M. Collin. 2008. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8: 935-947.   DOI   ScienceOn
39 Jahnsen, F. L., D. H. Strickland, J. A. Thomas, I. T. Tobagus, S. Napoli, G. R. Zosky, D. J. Turner, P. D. Sly, P. A. Stumbles, and P. G. Holt. 2006. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol. 177: 5861-5867.   DOI
40 Sung, S. S., S. M. Fu, C. E. Rose, Jr., F. Gaskin, S. T. Ju, and S. R. Beaty. 2006. A major lung CD103 $({\alpha}_E)-{\beta}_7$ integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 176: 2161-2172.   DOI
41 Chieppa, M., M. Rescigno, A. Y. Huang, and R. N. Germain. 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203: 2841-2852.   DOI   ScienceOn
42 Hammad, H. and B. N. Lambrecht. 2008. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat. Rev. Immunol. 8: 193-204.   DOI   ScienceOn
43 Guerrero-Plata, A., A. Casola, G. Suarez, X. Yu, L. Spetch, M. E. Peeples, and R. P. Garofalo. 2006. Differential response of dendritic cells to human metapneumovirus and respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 34: 320-329.   DOI   ScienceOn
44 Chang, J. 2011. Current progress on development of respiratory syncytial virus vaccine. BMB Rep. 44: 232-237.   DOI
45 del Rio, M. L., G. Bernhardt, J. I. Rodriguez-Barbosa, and R. Forster. 2010. Development and functional specialization of $CD103^+$ dendritic cells. Immunol. Rev. 234: 268-281.   DOI   ScienceOn
46 Helft, J., F. Ginhoux, M. Bogunovic, and M. Merad. 2010. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol. Rev. 234: 55-75.   DOI   ScienceOn
47 Ginhoux, F., K. Liu, J. Helft, M. Bogunovic, M. Greter, D. Hashimoto, J. Price, N. Yin, J. Bromberg, S. A. Lira, E. R. Stanley, M. Nussenzweig, and M. Merad. 2009. The origin and development of nonlymphoid tissue $CD103^+$ DCs. J. Exp. Med. 206: 3115-3130.   DOI   ScienceOn
48 Edelson, B. T., T. R. Bradstreet, W. Kc, K. Hildner, J. W. Herzog, J. Sim, J. H. Russell, T. L. Murphy, E. R. Unanue, and K. M. Murphy. 2011. Batf3-dependent CD11b(low/-) peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS One 6: e25660.   DOI
49 Zhan, Y., E. M. Carrington, A. van Nieuwenhuijze, S. Bedoui, S. Seah, Y. Xu, N. Wang, J. D. Mintern, J. A. Villadangos, I. P. Wicks, and A. M. Lew. 2011. GM-CSF increases cross-presentation and CD103 expression by mouse $CD8^+$ spleen dendritic cells. Eur. J. Immunol. 41: 2585-2595.   DOI   ScienceOn
50 Sathe, P., J. Pooley, D. Vremec, J. Mintern, J. O. Jin, L. Wu, J. Y. Kwak, J. A. Villadangos, and K. Shortman. 2011. The acquisition of antigen cross-presentation function by newly formed dendritic cells. J. Immunol. 186: 5184-5192.   DOI
51 Neyt, K. and B. N. Lambrecht. 2013. The role of lung dendritic cell subsets in immunity to respiratory viruses. Immunol. Rev. 255: 57-67.   DOI   ScienceOn
52 Guilliams, M., B. N. Lambrecht, and H. Hammad. 2013. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol. 6: 464-473.   DOI   ScienceOn
53 Johnson, T. R., C. N. Johnson, K. S. Corbett, G. C. Edwards, and B. S. Graham. 2011. Primary human mDC1, mDC2, and pDC dendritic cells are differentially infected and activated by respiratory syncytial virus. PLoS One 6: e16458.   DOI   ScienceOn
54 Kim, T. H. and H. K. Lee. 2014. Innate immune recognition of respiratory syncytial virus infection. BMB Rep. 47; 184-191.   DOI   ScienceOn
55 Idoyaga, J., N. Suda, K. Suda, C. G. Park, and R. M. Steinman. 2009. Antibody to Langerin/CD207 localizes large numbers of $CD8{\alpha}^+$ dendritic cells to the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. USA 106: 1524-1529.   DOI   ScienceOn
56 Iijima, N., L. M. Mattei, and A. Iwasaki. 2011. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc. Natl. Acad. Sci. USA 108: 284-289.   DOI   ScienceOn
57 Soudja, S. M., A. L. Ruiz, J. C. Marie, and G. Lauvau. 2012. Inflammatory monocytes activate memory $CD8^+$ T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37: 549-562.   DOI   ScienceOn
58 Waskow, C., K. Liu, G. Darrasse-Jeze, P. Guermonprez, F. Ginhoux, M. Merad, T. Shengelia, K. Yao, and M. Nussenzweig. 2008. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9: 676-683.   DOI   ScienceOn
59 Kang, S. J. 2012. The bloodline of $CD8{\alpha}^+$ dendritic cells. Mol. Cells 34: 219-229.   DOI   ScienceOn
60 Meredith, M. M., K. Liu, G. Darrasse-Jeze, A. O. Kamphorst, H. A. Schreiber, P. Guermonprez, J. Idoyaga, C. Cheong, K. H. Yao, R. E. Niec, and M. C. Nussenzweig. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209: 1153-1165.   DOI
61 Lin, K. L., Y. Suzuki, H. Nakano, E. Ramsburg, and M. D. Gunn. 2008. $CCR2^+$ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 180: 2562-2572.   DOI
62 Seo, S. U., H. J. Kwon, H. J. Ko, Y. H. Byun, B. L. Seong, S. Uematsu, S. Akira, and M. N. Kweon. 2011. Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog. 7: e1001304.   DOI   ScienceOn
63 Cao, W., A. K. Taylor, R. E. Biber, W. G. Davis, J. H. Kim, A. J. Reber, T. Chirkova, J. A. De La Cruz, A. Pandey, P. Ranjan, J. M. Katz, S. Gangappa, and S. Sambhara. 2012. Rapid differentiation of monocytes into type I IFN-producing myeloid dendritic cells as an antiviral strategy against influenza virus infection. J. Immunol. 189: 2257-2265.   DOI   ScienceOn
64 Hou, W., J. S. Gibbs, X. Lu, C. B. Brooke, D. Roy, R. L. Modlin, J. R. Bennink, and J. W. Yewdell. 2012. Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells. Blood 119: 3128-3131.   DOI
65 Willart, M. A., H. Jan de Heer, H. Hammad, T. Soullie, K. Deswarte, B. E. Clausen, L. Boon, H. C. Hoogsteden, and B. N. Lambrecht. 2009. The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen. J. Exp. Med. 206: 2823-2835.   DOI   ScienceOn
66 Cheong, C., I. Matos, J. H. Choi, D. B. Dandamudi, E. Shrestha, M. P. Longhi, K. L. Jeffrey, R. M. Anthony, C. Kluger, G. Nchinda, H. Koh, A. Rodriguez, J. Idoyaga, M. Pack, K. Velinzon, C. G. Park, and R. M. Steinman. 2010. Microbial stimulation fully differentiates monocytes to DC-SIGN/$CD209^+$ dendritic cells for immune T cell areas. Cell 143: 416-429.   DOI   ScienceOn
67 Sallusto, F. and A. Lanzavecchia. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179: 1109-1118.   DOI   ScienceOn
68 Bogunovic, M., F. Ginhoux, J. Helft, L. Shang, D. Hashimoto, M. Greter, K. Liu, C. Jakubzick, M. A. Ingersoll, M. Leboeuf, E. R. Stanley, M. Nussenzweig, S. A. Lira, G. J. Randolph, and M. Merad. 2009. Origin of the lamina propria dendritic cell network. Immunity 31: 513-525.   DOI   ScienceOn
69 Naik, S. H., D. Metcalf, A. van Nieuwenhuijze, I. Wicks, L. Wu, M. O'Keeffe, and K. Shortman. 2006. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7: 663-671.   DOI   ScienceOn
70 Dudziak, D., A. O. Kamphorst, G. F. Heidkamp, V. R. Buchholz, C. Trumpfheller, S. Yamazaki, C. Cheong, K. Liu, H. W. Lee, C. G. Park, R. M. Steinman, and M. C. Nussenzweig. 2007. Differential antigen processing by dendritic cell subsets in vivo. Science 315: 107-111.   DOI   ScienceOn
71 Varol, C., A. Vallon-Eberhard, E. Elinav, T. Aychek, Y. Shapira, H. Luche, H. J. Fehling, W. D. Hardt, G. Shakhar, and S. Jung. 2009. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31: 502-512.   DOI   ScienceOn
72 Serbina, N. V., T. P. Salazar-Mather, C. A. Biron, W. A. Kuziel, and E. G. Pamer. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19: 59-70.   DOI   ScienceOn
73 Wang, H., N. Peters, and J. Schwarze. 2006. Plasmacytoid dendritic cells limit viral replication, pulmonary inflammation, and airway hyperresponsiveness in respiratory syncytial virus infection. J. Immunol. 177: 6263-6270.   DOI
74 Wolf, A. I., D. Buehler, S. E. Hensley, L. L. Cavanagh, E. J. Wherry, P. Kastner, S. Chan, and W. Weninger. 2009. Plasmacytoid dendritic cells are dispensable during primary influenza virus infection. J. Immunol. 182: 871-879.   DOI
75 Swiecki, M., S. Gilfillan, W. Vermi, Y. Wang, and M. Colonna. 2010. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and $CD8^+$ T cell accrual. Immunity 33: 955-966.   DOI   ScienceOn
76 Swiecki, M., Y. Wang, S. Gilfillan, and M. Colonna. 2013. Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog. 9: e1003728.   DOI
77 Reizis, B., A. Bunin, H. S. Ghosh, K. L. Lewis, and V. Sisirak. 2011. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29: 163-183.   DOI   ScienceOn
78 Dominguez, P. M. and C. Ardavin. 2010. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol. Rev. 234: 90-104.   DOI   ScienceOn
79 Nagai, Y., K. P. Garrett, S. Ohta, U. Bahrun, T. Kouro, S. Akira, K. Takatsu, and P. W. Kincade. 2006. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24: 801-812.   DOI   ScienceOn
80 Leon, B., M. Lopez-Bravo, and C. Ardavin. 2007. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26: 519-531.   DOI   ScienceOn
81 Cisse, B., M. L. Caton, M. Lehner, T. Maeda, S. Scheu, R. Locksley, D. Holmberg, C. Zweier, N. S. den Hollander, S. G. Kant, W. Holter, A. Rauch, Y. Zhuang, and B. Reizis. 2008. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135: 37-48.   DOI   ScienceOn
82 Reizis, B. 2010. Regulation of plasmacytoid dendritic cell development. Curr. Opin. Immunol. 22: 206-211.   DOI   ScienceOn
83 Cella, M., F. Facchetti, A. Lanzavecchia, and M. Colonna. 2000. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat. Immunol. 1: 305-310.   DOI   ScienceOn
84 Fonteneau, J. F., M. Gilliet, M. Larsson, I. Dasilva, C. Munz, Y. J. Liu, and N. Bhardwaj. 2003. Activation of influenza virus-specific $CD4^+$ and $CD8^+$ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 101: 3520-3526.   DOI   ScienceOn
85 Hoeffel, G., A. C. Ripoche, D. Matheoud, M. Nascimbeni, N. Escriou, P. Lebon, F. Heshmati, J. G. Guillet, M. Gannage, S. Caillat-Zucman, N. Casartelli, O. Schwartz, H. De la Salle, D. Hanau, A. Hosmalin, and C. Maranon. 2007. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 27: 481-492.   DOI   ScienceOn
86 Takizawa, H., S. Boettcher, and M. G. Manz. 2012. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119: 2991-3002.   DOI   ScienceOn
87 De Heer, H. J., H. Hammad, M. Kool, and B. N. Lambrecht. 2005. Dendritic cell subsets and immune regulation in the lung. Semin. Immunol. 17: 295-303.   DOI   ScienceOn
88 Iwasaki, A. and P. S. Pillai. 2014. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14: 315-328.   DOI   ScienceOn
89 Satpathy, A. T., W. Kc, J. C. Albring, B. T. Edelson, N. M. Kretzer, D. Bhattacharya, T. L. Murphy, and K. M. Murphy. 2012. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209: 1135-1152.   DOI   ScienceOn