• Title/Summary/Keyword: infinite-layer

Search Result 145, Processing Time 0.028 seconds

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

Onset of Inertial Oscillation in a Rotating Flow (회전유동에서의 관성진동 원인규명)

  • Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2536-2539
    • /
    • 2008
  • A study has been made on how to occur inertial oscillations in a rotating flow. The flow is considered to be induced by differentially-rotating top and bottom disks with infinite radius. The top and bottom disks are assumed to be set in motion over a finite initial start-up time duration from initial solid body rotation ($\Omega$) to each finial state, i.e., the top disk is rotating at the angular velocity (${\Omega}+{\Delta}{\Omega}$) and the bottom disk (${\Omega}-{\Delta}{\Omega}$). The system Reynolds number, which is a reciprocal of conventional Ekman number in rotating flows, is very high so that a boundary layer flow near disks is pronounced. From a strict theoretical analysis, it is clearly found the fact that inertial oscillation in a rotating flow is caused by excessive input of torque during start-up phase. Above finding comes from the following physics of theoretical result: in the case of abrupt start-up within very shorter time-duration than spin-up time scale, the inertial oscillation is magnified but it could be completely depressed in the case of mildly accelerated start-up, i.e., start-up process being established over diffusion time scale.

  • PDF

A Study on Entrance Length of Developing Transitional Steady Flows in a Square Duct (4각 덕트의 입구영역에서 천이 정상유동의 입구길이에 관한 연구)

  • Park, G.M.;Yoo, Y.T.;Koh, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1990
  • In the present study, the entrance length, velocity profiles and waveforms of developing transitional steady flows in a square duct are investigated analytically and experimentally. The systems of conservation equations for transitional steady duct flows are solved analytically by linearizing non-linear convective terms and adoption of modified eddy viscosity from empirical correlations. Analytical solutions of velocity profiles for developing transitional steady flow were obtained in the form of infinite series. The experimental study for transitional steady flow in a square duct with $40mm{\times}40mm{\times}4000mm$($width{\times}height{\times}length$) was carried out to measure velocity profiles and other parameters by using a hot-wire anemometer with data acquisition and processing system. The entrance length of developing transitional steady flows in a square duct was $L_e{\fallingdotseq}0.02{\cdot}Re,st{\cdot}D_h$, and the overshoot was occured at about 30 times of hydraulic diameter because of the effect of external velocity of boundary layer and instantaneous acceleration.

  • PDF

IGNITION OF REACTIVE SOLIDS WITH ROUGH SURFACE BY CONSTANT HEAT FLUX

  • Chae, J.O.;Mokhin, G.N.;Moon, J.I.;Shmelev, V.M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.11-30
    • /
    • 1995
  • The ignition characteristics of a reactive solid with rough surface by constant heat flux were studied. The geometry of surface was represented by a set of identical protrusions having a shape of wedge based on the block of reactive solid. Several regimes of ignition were found, depending on the ratio of the protrusion length and the depth of the heated layer, formed in course of ignition process: 1) when the substance is ignited as the massive block, and the effect of roughness is not pronounced; 2) when ignited are the individual protrusions; and 3) in the intermediate region between the first two. Critical ignition conditions: ignition time and ignition criterion, are determined for the three regimes. The results are compared with the results for the one-dimensional ignition of the semi-infinite body. It is shown, that the effect of geometry on ignition results in the considerable reduction of ignition delay, and the amount of energy required for the successful ignition is less compared to the one- dimensional case.

  • PDF

Apparent Soil Resistivity Calculation Using Complex Image Method (복소수이미지 방법을 이용한 겉보기 대지저항률 계산)

  • Kim, Ho-Chan;Boo, Chang-Jin;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.318-321
    • /
    • 2019
  • The apparent soil resistivity is used for estimating multilayer soil parameters, such as, layer's depth and soil resistivity. The apparent soil resistivity can be measured, and also can be calculated if soil parameters are given, becacuse the apparent soil resistivity is a function of these parameters. Therefore, any optimization algorithms can be used to find these parameters which make the calculated apparent soil resistivity close to the measured one. The equation for calculating the apparent soil resistivity is complicated and time consumed, because it is composed of an infinite integral which includes a zero order Bessel's function of the first kind. In this paper, a fast algorithm for calculating the apparent soil resistivity of horizontal multilayer earth structure has been presented using complex image method.

The Development of Embroidery Textile Design Using Machine Embroidery CAD System (기계자수 CAD시스템을 활용한 자수 텍스타일 디자인 전개)

  • Jungha Lim;Seungyeun Heo
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.4
    • /
    • pp.87-99
    • /
    • 2022
  • The purpose of this study is to develop machine embroidery textile designs for each technique that can be expressed using a single-headed computer embroidery sewing machine through a machine embroidery CAD system. For research, embroidery CAD utilized the Artistic digitizer, and the guillotine computer-mechanical magnetization machine used ELNA. The design concept was limited to portraits and relics of independence activists in six memorial halls built in Korea. The results of this study are as follows. First, it was found that the machine embroidery texture, which could only be produced by industries in the past, can be expand in the infinite creative embroidery design area by enabling the digitalization of motif images and the simulation of machine embroidery techniques through various layout options. Second, in the development of machine embroidery textures, it was found that the setting of the width, height, axis ratio, stitch, object, path, length, density, layer order, etc. in embroidery CAD is a very important part of determining the completeness of the embroidery results. Third, mechanical embroidery textile designs, which can be represented by single-head computer machine embroidery machine were able to show colorful embroidery results that differs from the original image by using seven main techniques and five deep technique alone or in combination, according to the designer's intention.

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

Development of Agent-based Platform for Coordinated Scheduling in Global Supply Chain (글로벌 공급사슬에서 경쟁협력 스케줄링을 위한 에이전트 기반 플랫폼 구축)

  • Lee, Jung-Seung;Choi, Seong-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.213-226
    • /
    • 2011
  • In global supply chain, the scheduling problems of large products such as ships, airplanes, space shuttles, assembled constructions, and/or automobiles are complicated by nature. New scheduling systems are often developed in order to reduce inherent computational complexity. As a result, a problem can be decomposed into small sub-problems, problems that contain independently small scheduling systems integrating into the initial problem. As one of the authors experienced, DAS (Daewoo Shipbuilding Scheduling System) has adopted a two-layered hierarchical architecture. In the hierarchical architecture, individual scheduling systems composed of a high-level dock scheduler, DAS-ERECT and low-level assembly plant schedulers, DAS-PBS, DAS-3DS, DAS-NPS, and DAS-A7 try to search the best schedules under their own constraints. Moreover, the steep growth of communication technology and logistics enables it to introduce distributed multi-nation production plants by which different parts are produced by designated plants. Therefore vertical and lateral coordination among decomposed scheduling systems is necessary. No standard coordination mechanism of multiple scheduling systems exists, even though there are various scheduling systems existing in the area of scheduling research. Previous research regarding the coordination mechanism has mainly focused on external conversation without capacity model. Prior research has heavily focuses on agent-based coordination in the area of agent research. Yet, no scheduling domain has been developed. Previous research regarding the agent-based scheduling has paid its ample attention to internal coordination of scheduling process, a process that has not been efficient. In this study, we suggest a general framework for agent-based coordination of multiple scheduling systems in global supply chain. The purpose of this study was to design a standard coordination mechanism. To do so, we first define an individual scheduling agent responsible for their own plants and a meta-level coordination agent involved with each individual scheduling agent. We then suggest variables and values describing the individual scheduling agent and meta-level coordination agent. These variables and values are represented by Backus-Naur Form. Second, we suggest scheduling agent communication protocols for each scheduling agent topology classified into the system architectures, existence or nonexistence of coordinator, and directions of coordination. If there was a coordinating agent, an individual scheduling agent could communicate with another individual agent indirectly through the coordinator. On the other hand, if there was not any coordinating agent existing, an individual scheduling agent should communicate with another individual agent directly. To apply agent communication language specifically to the scheduling coordination domain, we had to additionally define an inner language, a language that suitably expresses scheduling coordination. A scheduling agent communication language is devised for the communication among agents independent of domain. We adopt three message layers which are ACL layer, scheduling coordination layer, and industry-specific layer. The ACL layer is a domain independent outer language layer. The scheduling coordination layer has terms necessary for scheduling coordination. The industry-specific layer expresses the industry specification. Third, in order to improve the efficiency of communication among scheduling agents and avoid possible infinite loops, we suggest a look-ahead load balancing model which supports to monitor participating agents and to analyze the status of the agents. To build the look-ahead load balancing model, the status of participating agents should be monitored. Most of all, the amount of sharing information should be considered. If complete information is collected, updating and maintenance cost of sharing information will be increasing although the frequency of communication will be decreasing. Therefore the level of detail and updating period of sharing information should be decided contingently. By means of this standard coordination mechanism, we can easily model coordination processes of multiple scheduling systems into supply chain. Finally, we apply this mechanism to shipbuilding domain and develop a prototype system which consists of a dock-scheduling agent, four assembly- plant-scheduling agents, and a meta-level coordination agent. A series of experiments using the real world data are used to empirically examine this mechanism. The results of this study show that the effect of agent-based platform on coordinated scheduling is evident in terms of the number of tardy jobs, tardiness, and makespan.

A Finite Element Based PML Method for Time-domain Electromagnetic Wave Propagation Analysis (시간영역 전자기파 전파해석을 위한 유한요소기반 PML 기법)

  • Yi, Sang-Ri;Kim, Boyoung;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • This paper presents a new formulation for transient simulations of microwave propagation in heterogeneous unbounded domains. In particular, perfectly-matched-layers(PMLs) are introduced to allow for wave absorption at artificial boundaries used to truncate the infinite extent of the physical domains. The development of the electromagnetic PML targets the application to engineering mechanics problems such as structural health monitoring and inverse medium problems. To formulate the PML for plane electromagnetic waves, a complex coordinate transformation is introduced to Maxwell's equations in the frequency-domain. Then the PML-endowed partial differential equations(PDEs) for transient electromagnetic waves are recovered by the application of the inverse Fourier transform to the frequency-domain equations. A mixed finite element method is employed to solve the time-domain PDEs for electric and magnetic fields in the PML-truncated domain. Numerical results are presented for plane microwaves propagating through concrete structures, and the accuracy of solutions is investigated by a series of error analyses.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(2) - Verification of Developed Methodologies and Optimal Active-Control of Flow for Drag Reduction (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(2) - 개발된 기법의 검증 및 드래그 감소를 위한 유체의 최적 액티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.671-680
    • /
    • 2007
  • The objective of this work is to reduce drag on a bluff body within a viscous flow by applying suction or injection of fluid along the surface of the body. In addition to minimizing drag, the optimal solution tends to reduce boundary layer separation and flow recirculation. When discretized by finite elements, the optimal control problem can be posed as a large-scale nonlinearly-constrained optimization problem. The constraints correspond to the discretized form of the Navier-Stokes equations. Unfortunately, solving such large-scale problems directly is essentially intractable. We developed several Sequential Quadratic Programming methods that are tailored to the structure of the control problem. Example problems of laminar flow around an infinite cylinder in two dimensions are solved to demonstrate the methodology. We use these optimal control techniques to study the influence of number of suction/injection holes and location of holes on the resulting optimized flow. We compare the proposed SQP methods against one another, as well as against available methods from the literature, from the point of view of efficiency and robustness. The most efficient of the proposed methods is two orders of magnitude faster than existing methods.