• Title/Summary/Keyword: inertia

Search Result 2,013, Processing Time 0.031 seconds

Effect of Rotary Inertia of Concentrated Masses on the Natural Vibration of Fluid Conveying Pipe

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.202-213
    • /
    • 1999
  • Effects of the rotary inertia of concentrated masses on the natural vibrations of fluid conveying pipes have been studied by theoretical modeling and computer simulation. For analysis, two boundary conditions for pipe ends, simply supported and clamped-clamped, are assumed and Galerkin's method is used for transformation of the governing equation to the eigenvalues problem and the natural frequencies and mode shapes for the system have been calculated by using the newly developed computer code. Moreover, the critical velocities related to a system instability have been investigated. The main conclusions for the present study are (1) Rotary inertia gives much change on the higher natural frequencies and mode shapes and its effect is visible when it has small value, (2) The number and location of nodes can be changed by rotary inertia, (3) By introducing rotary inertia, the second natural frequency approaches to the first as the location of the concentrated mass approaches to the midspan of the pipe, and (4) The critical fluid velocities to initiate the system unstable are unchanged by introduction of rotary inertia and the first three velocities are $\pi$, 2$\pi$, and 3$\pi$ for the simply supported pipe and 2$\pi$, 8.99, and 12.57 for the clamped-clamped pipe.

  • PDF

Analysis of the Dynamic Characteristics of a Small Regenerative Gas Turbine (소형 재생 가스터빈의 동적 작동특성 해석)

  • Kim, Jae Hwan;Jeon, Yong Joon;Kim, Tong Seop;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.769-777
    • /
    • 1999
  • This paper presents models for the dynamic simulation of a regenerative gas turbine and describes dynamic behaviors of a small regenerative engine. A quasi-steady model is introduced where the inertia of the working fluid is assumed to be negligible compared with the mechanical inertia of the rotating shaft. Based on this quasi-steady model, the transient model for the heat exchanger is employed to simulate the unsteady heat exchange in the recuperator. The effect of the thermal inertia of the recuperator metal on transient behaviors is analyzed by comparing the predicted results of the transient and steady state heat exchanger models. For several load change modes such as sudden increase, decrease and periodic variation, engine dynamic characteristics are investigated by applying a fuel control logic for the constant shaft speed. It is found that the thermal inertia of the recuperator metal has a dominant effect on the whole engine dynamic behavior.

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load (사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰)

  • Lee, Seung-Bea;Park, Mi-Young;Jang, Su-Youn;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2008
  • The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia of RC beams for the evaluation of flexural deflection, and to develop a modified method on the estimation of the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

Methods for Measurement of Moment of Segmental Inertia Using a Dynamometer (동력계를 이용한 분절관성모멘트 측정 방법)

  • Son, J.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.156-162
    • /
    • 2013
  • Moments of inertia of limb segments are essential to calculate parameters related to the segmental rotation. To analyze the human motion accurately and specifically, moments of inertia obtained from the individual are required. In this study, a simple method to determine a subject-specific moment of segmental inertia using a dynamometer is introduced. In order to evaluate the method, one male participated to test for his forearm plus hand on a commercial dynamometer. Three passive speeds, i.e. 240, 270, and $300^{\circ}/s$, were chosen to confirm whether the moment of inertia values at each speed approach to a fixed value. The same procedure was repeated on the day after to evaluate whether the method is reproducible. As the results, there were no significant differences among the speeds and between the days. The value of the moment of the forearm inertia was 0.216 $kg{\cdot}m^2$ that is apparently higher compared to values by previous models. Nonetheless, it seems to be acceptable based on our body mass index analysis using reported subject height and mass in each previous study. According to our results, the developed method could be useful to determine the segmental moment of inertia of an individual, showing no significant differences among the speeds and between the days. Thus, we believe that our results are reliable according to two appropriate evaluation procedures. This finding would be helpful to calculate segmental rotation related parameters of an individual.

Vibration Suppression Control of 3-mass Inertia System by using LMI Theory (LMI 이론에 의한 삼관성 시스템의 진동억제)

  • 최연욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.65-72
    • /
    • 2001
  • Generally, it is said that control of the inertia system is to track the reference input quickly while suppressing the vibration due to the system itself. In this case, the difficulty fur designing a controller is caused by modeling uncertainty and parameter variation. The purpose of this paper is to propose a design method to suppress the vibration of three-mass inertia system based on the LMI theory. That is, the generalized plant model by which we can cope with conservativeness of the existing H$_{*}$ theory is proposed and analyzed in terms of LMI. The results of simulation fur the three-mass inertia system show that the proposed design approach is quite effective under the given situations.

  • PDF

Field Measurement of the Center of Gravity and the Moment of Inertia of Railway Vehicles Using Vibration (진동을 이용한 철도차량의 무게중심과 관성모멘트 현장 측정)

  • Song, Ki-Seok;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.878-884
    • /
    • 2013
  • The center of gravity and the moment of inertia of railway vehicles are important parameters for running safety and stability in railway vehicle design. However, the exact measurement of those is difficult in manufacturing field. The weight measurement of a railway vehicle beneath the wheel using a weight scale is off by a large amount. This paper suggests a measurement method for the center of gravity and the moment of inertia of railway vehicles using vibration. For the measurement a railway vehicle is suspended using four wires. Direct measurement of the tension of the wires and the period of swinging motion of the suspended railway vehicle with calculations give the exact location of the center of gravity and the moment of inertia in x, y, and z directions, respectively. This implementation was demonstrated using an experimental device and verified numerically.

Users' Status Quo Bias in the Mobile Application Context : From the Myopic Loss Aversion Perspective (근시안적 손실회피 관점에서 본 모바일 애플리케이션 사용자의 현상유지 편향에 관한 연구)

  • Park, Sang-Cheol
    • The Journal of Information Systems
    • /
    • v.24 no.2
    • /
    • pp.189-208
    • /
    • 2015
  • Purpose While individuals have unique abilities for planned behavior, they also often act irrationally. In this study, we draw on myopic loss aversion perspective as a meta-theoretical lens to explain why mobile applications users have inertia from updating their applications, ultimately leading them to use current version of applications. Design/methodology/approach Based on a survey of 219 users, this study conducts its research model using partial least square analysis and also demonstrates that both subconscious triggers (habit and anxiety) of system 1 thinking and conscious triggers (sunk cost and transition cost) of system 2 thinking promotes user's inertia, thus leading to the willness to continue use current versions. Findings By grounding the research model in the combination of both status quo bias and dual information processing theory from the behavioral economics, this study provide an alternative theoretical lens to describe why mobile users hesitate to update their applications. The results of this research show that all triggers have significant impacts on inertia. This study also found that the relationship between inertia and willingness to continue to use current version was positively significant.

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

An Empirical Study on the Relationships among Employee Silence, Learning Inertia, and Knowledge Sharing Disengagement (구성원 침묵, 학습관성, 지식공유 비열의 간의 관계에 관한 실증연구)

  • Heo, Myung Sook;Cheon, Myun Joong
    • Knowledge Management Research
    • /
    • v.18 no.4
    • /
    • pp.31-62
    • /
    • 2017
  • It found that employee silence negatively impacts both organizations and their employees as shown in findings from many studies and recently there has been a growing interest in it. Silence is described as intentionally withholding job-related ideas, information, concerns, and opinions. Employee silence may decrease organizational change and innovation and reduce employee learning motivation and knowledge sharing engagement as well. The purpose of this study is to examine the relationships among silence motivations, perceived silence climate, and employee silence; the relationships among employee silence, learning inertia and knowledge sharing disengagement; the mediating role of employee silence between antecedents of employee silence and consequences additionally. The results that analyzed using data from 225 employees in 42 organizations are as follows. First, the impact of silence motivation and perceived silence climate on employee silence are positively significant. Second, the influence of defensive silence motivation on the acquiescent and relational silence motivation is positively significant. Third, the influence of employee silence on learning inertia and knowledge sharing disengagement is positively significant. Forth, employee silence mediates the relationship between silence motivation and perceived silence climate and learning inertia and knowledge sharing disengagement. These results suggest that employee silence is another strong expression and message for organizations to try to establish a learning organization from the perspective of knowledge management.

An Empirical Study on the Relationships Among Employees' Learning Inertia, Unlearning, Knowledge Integration Capabilities, and Innovative Behavior (구성원들의 학습관성, 폐기학습, 지식통합능력, 혁신행동 간의 관계에 관한 실증연구)

  • Heo, Myung Sook;Cheon, Myun Joong
    • Knowledge Management Research
    • /
    • v.16 no.2
    • /
    • pp.249-278
    • /
    • 2015
  • Employees' knowledge integration capabilities and innovative behavior are still of crucial importance in the effective knowledge management. Recently researchers and practitioners are interested in both the potential benefits of unlearning and the negative aspects of learning inertia. The purpose of this study is to examine the relationships among learning inertia, unlearning, knowledge integration capabilities(knowledge exploitation and knowledge exploration) and innovative behavior. The results of analysis show that learning inertia is employees' psychological obstacle factor affecting knowledge integration capabilities and unlearning, that unlearning of employees is a key factor affecting knowledge integration capabilities, and that knowledge integration capabilities are driving forces leading to innovative behaviors of employees. For theoretical and practical implications, the research presents the grounds for arguments that knowledge integration capabilities are employees' dynamic capabilities from the knowledge management perspective, that unlearning is a driving force of employees' positive behaviors, and that organizations trying to perform the dynamic knowledge management need to identify the causes of employees' psychological resistance to learning. Limitations arisen in the course of the research and suggestions for future research directions are also discussed.