사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰

이승배 11 · 박미영 11 · 장수연 21 · 김강수 31* · 김상식 11

¹⁾인하대학교 건축학부²⁾(주)삼성물산 건설부문³⁾서울시립대학교 건축학부

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load

Seung-Bea Lee,¹⁾ Mi-Young Park,¹⁾ Su-Youn Jang,²⁾ Kang-Su Kim,^{3)*} and Sang-Sik Kim¹⁾

¹⁾Dept. of Architectural Engineering, Inha University, Incheon 402-751, Korea

²⁾Samsung Corporation, Engineering and Construction, Housing Division, Sungnam 463-721, Korea

³⁾Dept. of Architectural Engineering, University of Seoul, Seoul 130-743, Korea

ABSTRACT The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

Keywords : effective moment of inertia, cracking moment of inertia, flexural rigidity, defection, service load

1.서 론

철근콘크리트구조물은 소요강도를 만족하도록 설계됨 과 동시에 구조물의 용도에 적합한 사용성을 확보하여야 한다. 철근콘크리트구조물의 사용성은 일반적으로 과다 한 균열, 처짐 및 진동 등이 발생하지 않도록 제한함으 로써 확보될 수 있다. 균열, 처짐 및 진동은 상호 연관 성이 있지만 그 중 하나의 요소에 의하여 지배되는 경 우가 일반적이며, 대개의 경우 처짐이 구조물의 사용성 을 확보하기 위한 가장 중요한 검토사항이 된다.

따라서 철근콘크리트 휨 부재의 처짐은 오랫동안 많은 연구자들의 주제가 되었고, 그 결과 단기 또는 장기 재 하 시 처짐을 예측하는 많은 방법이 제안되었다.^{1,2)} 단기 처짐에 영향을 미치는 주요 인자는 경간 길이, 단부 구 속 상태, 단면의 형태 및 크기, 하중 분포, 재료 성질 및

*Corresponding author E-mail: kangkim@uos.ac.kr *Received January 23, 2008, Revised February 5, 2008, Accepted March 5, 2008 © 2008 by Korea Concrete Institute

균열의 양과 확장 등이다. 따라서 처짐 예측을 위한 제 안 모델은 이러한 여러 주요 인자들이 처짐에 미치는 영 향을 잘 반영할 수 있어야 한다. 철근콘크리트 휨 부재 에 균열이 발생하게 중립축의 변화와 더불어 휨 강성이 작아지게 되고 곡률이 증가하게 된다. 보의 휨 강성은 단면2차모멘트 /에 의하여 결정되는데, 하중 및 지지 조 건에 따라 보의 길이 방향에서 균열의 발생 위치 및 높 이가 달라지므로 단면의 위치에 따라 각각 다른 1값을 가지게 된다. 즉 균열이 발생하기 전에 전체 단면이 유 효할 경우의 단면2차모멘트를 Ig 균열이 발생한 이후에 균열 단면2차모멘트를 I_{cr}이라고 한다면, 보의 길이 방향 을 따라 단면2차모멘트는 Ig와 Icr사이에서 변화하게 된 다. 균열이 발생한 철근콘크리트 휨 부재의 처짐을 산정 할 때 이렇게 변화하는 단면2차모멘트를 모두 고려한다 면 매우 복잡한 계산 문제가 발생할 것이다. 따라서 콘 크리트구조설계기준³⁾에서는 균열이 발생한 철근콘크리트 휨 부재의 처짐을 산정할 때 단면2차모멘트를 전체 단 면2차모멘트 I,와 균열 단면2차모멘트 Icr 사이의 값을 가 지는 유효 단면2차모멘트 Ie를 사용하고 있다.

그러나 기준에서 제시되고 있는 유효 단면2차모멘트 *I*_e 가 앞서 언급된 주요 인자들의 영향을 제한적으로 반영 하고 있어 이미 여러 연구자들에 의하여 수정 및 보완 이 필요하다는 보고가 있었다.⁴⁷⁾ 따라서 이 연구에서는 철근콘크리트 단순보를 대상으로 처짐에 영향을 미치는 주요 인자들을 변수로 하여 실험을 수행하여 각 변수별 영향을 분석하고, 특히 처짐과 관계가 되는 유효 단면2 차모멘트에 대하여 국내 기준식 및 다른 연구자들의 제 안식과 실험으로부터 측정된 값을 비교, 분석하여 수정 된 제안식을 도출함으로써 처짐 산정을 위한 기초 자료 를 제공하는데 그 목적을 두었다.

2 유효 단면2차모멘트에 대한 이론적 고찰

철근콘크리트 휨 부재의 처짐은 휨강성 EI에 반비례한 다. 보의 처짐은 보의 길이를 따라 곡률을 적분함으로써 계산될 수 있으며, 탄성보의 경우 곡률 Ø는 모멘트를 휨 강성으로 나누어 쉽게 계산된다 (즉, Ø = M/EI). 그러나 부재가 휨 모멘트를 받으면 부재에 균열이 발생하게 되 고, 균열이 발생하지 않은 단면의 전 단면2차모멘트와 균열이 발생한 단면의 단면2차모멘트는 달라지므로 단 면이 일정한 부재에서도 휨 강성은 모멘트 분포와 균열 발생 정도에 따라 변하게 된다.

현행 국내 콘크리트구조설계기준의 보 처짐 계산에 있 어서는 균열로 인한 단면손실을 고려하기 위하여 Branson^{1,2,8)}이 제안한 유효 단면2차모멘트 *I*_e를 사용하고 있으며, 등분포 하중을 받는 직사각형 또는 T형 단순보 의 처짐 계산을 위한 유효 단면2차모멘트 *I*_e는 다음과 같 이 정의되고 있다.

$$I_e = \left(\frac{M_{cr}}{M_a}\right)^3 I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right] I_{cr} \le I_g \tag{1}$$

여기서

 $M_{cr} = \frac{f_r I_g}{y_t}$: 균열모멘트

 M_a : 단면2차모멘트가 계산되는 부분에서의 최대 모멘트 I_{cr} : 균열단면의 단면2차모멘트 I_g : 보의 전단면에 대한 단면2차모멘트 $f_r = 0.63 \sqrt{f_{ck}}$: 파괴계수 v_r : 도심에서 인장측 최외단까지의 거리

Grossman⁴⁾은 유효 단면2차모멘트를 보다 간편하고 용 이하게 계산할 수 있도록 Branson의 제안식을 수정하여 식 (2) 및 (3)과 같이 제안하였다.

$$\frac{I_e}{I_g} = \left(\frac{M_{cr}}{M_a}\right)^2 \le 1.0 \quad \text{if} \left(\frac{M_a}{M_{cr}}\right) \le 1.6 \tag{2}$$

 $\frac{I_e}{I_g} = 0.1 \left(\frac{M_a}{M_{cr}}\right) \text{ if } \left(\frac{M_a}{M_{cr}}\right) > 1.6 \tag{3}$

단, 여기서 I_e/I_g 의 값은 0.35 이상으로 한다. 식 (2)와 (3)을 분석해 보면 I_e/I_g 의 값이 M_a/M_{cr} 에 의해서만 결 정되어지며, 모멘트가 작은 경우에 I_e/I_g 의 값이 M_a/M_{cr} 에 더 민감하게 변화하는 것을 알 수 있다. 따라서 Grossman⁴⁾의 제안식은 정확성 보다는 실용성을 강조한 제안식이라고 볼 수 있다.

한편 Rangan⁵⁾은 철근비를 사용하여 유효 단면2차모멘 트를 산정하였다.

 $I_e = kbd^3 \tag{4}$

여기서 $k=0.1955\sqrt{n\rho} \le 0.111$ if $n\rho > 0.045$

 $k = 0.0019 \sqrt{n\rho} \le 0.067$ if $n\rho \le 0.045$

식 (4)는 M_a/M_{cr} 비율 같은 하중 크기의 영향이나 균열 단면2차모멘트 I_{cr} 같은 요소를 반영하지 않았지만, 철근 비의 영향을 직접적으로 고려하였다는 것이 큰 차이점이다.

Al-Zaid 등[®]은 Branson의 제안식이 등분포 하중하에 서 유효 단면2차모멘트를 평가하였기 때문에 등분포 하 중이 아닌 상태에서는 유효 단면2차모멘트를 정확히 평 가하지 못한다고 판단하여, 등분포 하중, 2등분점 집중 하중, 3등분점 집중하중, 등분포 하중과 2등분점 집중하 중의 조합 상태에서 철근콘크리트 장방형 보의 실험을 수행한 후 실험으로부터 구해진 유효 단면2차모멘트를 Branson의 제안식과 비교하였다. 그 결과 동일한 모멘트 가 작용할 때 3등분점 집중하중 상태에서는 유효 단면2 차모멘트가 등분포하중에 비해 20% 크게, 2등분점 집중 하중 상태에서는 3등분점 집중하중 상태에 비해 12% 크 게 각각 측정되었다고 보고하였으며, 각 하중 상태에서 의 유효 단면2차모멘트를 식 (5)와 같이 일반화할 경우

$$I_e = \left(\frac{M_{cr}}{M_a}\right)^m I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^m\right] I_{cr}$$
(5)

m은 등분포하중일 때에는 2.8, 3등분점 집중하중일 때에
는 2.3, 2등분점 집중하중일 때에는 1.8이 각각 적합하다
고 보고하였다. 이 m값들은 실험을 통하여 식 (6)과 같
이 결정된 지수이다.

$$m = \frac{\log\left[\frac{(I_{\exp} - I_{cr})}{(I_g - I_{cr})}\right]}{\log\left(\frac{M_{cr}}{M_a}\right)}$$
(6)

여기서 *I*_{exp}=실험으로부터 측정된 유효 단면2차모멘트 따라서 이들은 Branson의 제안식이 보의 한 지점의 모

394 | 한국콘크리트학회 논문집 제20권 제3호 (2008)

멘트로부터 유효 단면2차모멘트를 계산하기 때문에 하 중조건에 따라 보의 균열 분포가 다르게 발생하는 것을 반영하지 못한다는 점을 토대로 하여, 보의 모멘트 분포 를 고려할 수 있도록 유효 단면2차모멘트 계산식을 다 음과 같이 제안하였다.

$$I_e = \left(\frac{L_{cr}}{L}\right)^{m'} I_{cr} + \left[1 - \left(\frac{L_{cr}}{L}\right)^{m'}\right] I_g \tag{7}$$

여기서 m'=실험을 통하여 결정된 계수 L_{cr}=부재의 균열발생 길이 L =부재의 길이

단, $L_{cr} = 0$ 인 경우 $I_e = I_g$, 부재 전 구간에 걸쳐 균열이 발생한 경우 $I_e = I_{cr}$ 이다. 또한 m' 값은 다음과 같은 방법 으로 구하였다.

$$m' = \frac{\log\left[\frac{(I_g - I_{exp})}{I_g - I_{cr}}\right]}{\log\left(\frac{L_{cr}}{L}\right)}$$
(8)

Al-Shaikh 등⁷은 자신들의 선행 연구를 바탕으로 Branson의 제안식에 철근비에 대한 영향을 추가로 고려 하여 유효 단면2차모멘트를 산정하였다. 단면의 크기와 철근비를 실험 변수로 하여 실험을 수행하였으며, 실험 결과 유효 단면2차모멘트 식 (5)의 *m*값을 철근비의 영향 을 고려하여 다음과 같이 제안하였다.

$$m = 3 - 0.008\rho$$
 (9)

여기서 *m*은 실험을 통하여 결정된 지수, ρ는 철근비를 뜻한다. 또한 식 (7)에서는 *m*'에 철근비의 영향을 고려 하여 식 (10)과 같이 나타내었다.

$$m' = \beta \, \frac{M_{cr}}{M_a} \tag{10}$$

여기서

$$\beta = 0.008\rho \tag{11}$$

위와 같이 보다 많은 영향 인자들을 반영하여 유효 단 면2차모멘트를 산출하고자 여러 연구들이 진행되었지만, 기존의 연구들에서 주요 인자들의 영향이 제한적으로 반 영되었거나 부분적으로 검증이 요구되며, 이에 대한 수 정 및 보완이 필요한 것을 알 수 있다. 그러므로 이 연 구에서는 기존의 연구를 토대로 하여, 처짐에 영향을 미 치는 주요 인자들을 실험적으로 검증하고 이를 수정·보 완하고자 하였다.

3.실 험

3.1 실험 계획

이 연구에서는 모두 14개의 실험체를 제작하였으며, 콘 크리트의 압축강도, 피복두께, 철근비 및 철근의 직경을 주요 변수로 하였다. 콘크리트의 강도는 $f_{ck} = 24$ MPa의 일반강도와 70 MPa의 고강도로 하였고, 보의 유효깊이 는 290 mm 및 310 mm로 하였다. 주인장철근은 SD400 재질의 4-D13, 5-D16, 3-D19, 2-D25를, 압축철근으로는 SD400재질의 2-D13을 사용하였다. 실험체 지점간 거리는 4,400 mm이고, 단면의 크기는 폭 250 mm, 높이 350 mm 로 하였다.

각 실험체의 제원 및 배근상세는 Table 1 및 Figs. 1, 2에 보이는 바와 같고, Figs. 1, 2에서 실험체의 단면은 실험체 중 주인장철근이 3-D19인 것을 그 예로 나타내 었다. 실험체명에서 G는 일반강도, H는 고강도 실험체 를 의미하며, X는 보의 유효깊이가 310 mm인 실험체, Y 는 유효깊이가 290 mm인 실험체를 뜻한다. 13, 16, 19, 25는 각각 주인장철근의 직경을 나타낸다. 실험체 타설 에 사용된 콘크리트의 배합 비율은 Table 2에 나타내었다.

3.2 실험 방법

실험체는 Figs. 3 및 4에서 보이는 바와 같이 1,000 kN 용량의 오일잭 및 가력용 형강을 사용하여 실험체의 상 부에 2점 집중하중으로 단조가력 하였으며, 가력 속도는 분당 5 kN으로 하였다. 실험체의 변위 측정을 위해 Fig. 5와 같이 지점, 가력점에서 지점 쪽으로 700 mm 떨어진 곳, 가력점 및 중앙부에 자동변위계를 설치하였으며, 주 인장철근의 중앙부와 가력점, 가력점에서 지점 쪽으로 700 mm 떨어진 곳에 스트레인게이지를 Fig. 6과 같이 부 착하여 철근의 변형률을 측정하였다. 매 초당 하중 및 부재의 변위, 철근의 변형률 등을 데이터로거를 통해 수 집하였으며, 각 하중 단계마다 균열의 발생 및 진전 상 황을 실험체에 직접 표기하였다.

4. 실험 결과 및 분석

4.1 재료 성능

이 실험에 사용된 콘크리트의 강도는 24 MPa 및 70 MPa로 계획하였으나, 재료 시험 결과 Table 3에 나타 낸 바와 같이 평균 압축강도가 28 MPa 및 76.4 MPa로 측 정되었다. 또한 실험체 제작에 사용된 SD40재질의 D13, D16, D19, D25철근의 재료 시험 결과는 Table 4에 나타 내었다. 실험 결과의 분석에는 재료 시험을 통해 얻은 평균 콘크리트 압축강도 및 각 철근의 항복응력을 사용 하였다.

Table 1 Specification of specimens

Specimens		f_{ck}	Concrete cover at the	Amount of steel					
		(MPa)	center of bar (mm)	Number & diameter of bar	$A_s (\mathrm{mm}^2)$	ρ			
		13			4-D13	508	0.0066		
G	v	16		40	5-D16	995	0.0128		
	Λ	19		40	3-D19	861	0.0111		
		25	24	Ĩ	2-D25	1014	0.0131		
		13			4-D13	508	0.007		
	Y	19		60	3-D19	861	0.0119		
		25		Ĩ	2-D25	1014	0.0140		
		13			4-D13	508	0.0066		
	v 16 5-D16		5-D16	995	0.0128				
	Λ	19		40	3-D19	861	0.0111		
Н		25	70	Ĩ	2-D25	1014	0.0131		
		13			4-D13	508	0.007		
	Y	19		60	3-D19	861	0.0119		
		25			2-D25	1014	0.0140		

Fig. 1 Cross section of specimen

Fig. 2 Reinforcing detail of specimen

4.2 하중-처짐 관계

각 실험체의 하중-중앙부 처짐 곡선은 Fig. 7과 같이 나타났으며, 보통강도 실험체 (G 시리즈)와 고강도 실험 체 (H 시리즈) 모두 일반적인 휨 부재의 거동을 보였다. 초기 균열이 발생하기 전까지는 뚜렷한 선형 탄성 거동 을 보였으며, 철근비에 관계없이 콘크리트의 강도에 따 라 강성이 결정되어 동일한 콘크리트를 갖는 실험체들은 동일한 강성을 가지는 것을 확인할 수 있었다. 균열발생 후에는 철근비에 따라 실험체별로 강성이 확연히 다르게 분포되었으며, 보통강도 실험체보다 고강도 실험체에서

Table 2 Mix p	proportion of	concrete
---------------	---------------	----------

Fig. 3 Test set-up

Fig. 4 Support and loading condition

Fig. 5 Loading and displacement acquisition point

더 뚜렷한 비탄성적 거동이 관찰되었다. 각 실험체의 항 복강도에 이르러서는 하중의 증가가 거의 없이 변위만 지속적으로 증가되었다.

Types	f (MDa)	W/C (9/)	Unit weight (kg/m ³)						
	J_{ck} (IVIT a)	W/C (76)	Cement	Water	Sand	Coarse aggregate Admixtu			
G type	24	46.6	343	160	828	1014	1.03		
H type	70	24.6	441	172	587	876	1.70		

Fig. 6 Location of wire strain gauge

Table 3 Result of concrete test

Design strength (MPa)	Compressive strength (MPa)	Average compressive strength (MPa)		
	28			
24	27.8	28.0		
	28.1			
	78.2			
70	74.7	76.4		
	76.3			

Table 4 Result of reinforcement test

Reinforcement types	Yiel	d stress (N	Average yield stress (MPa)		
D13	454	450	438	447	
D16	476	471	494	480	
D19	443	448	446	446	
D25	457	468	463	463	

Fig. 7 Load-deflection curve

4.3 유효 단면2차모멘트

앞서 언급된 것처럼 철근콘크리트 휨 부재의 처짐은 유효 단면2차모멘트에 의하여 좌우되게 된다. 본 연구에 서 수행된 실험체의 하중-중앙부 처짐 데이터와 아래의 하중-처짐관계 이론식 (12)를 이용하면 균열로 인한 단 면손실까지 고려되는 각 하중 단계에서의 유효 단면2차 모멘트를 직접적으로 도출할 수 있다.^{6.7,9} 이 연구에서 수 행된 Fig. 4와 같은 가력조건에서 중앙부의 처짐 w는 식 (12)와 같다.

$$w = \frac{Pa}{48EI_e} (3l^2 - 4a^2)$$
(12)

여기서 a는 지점에서 가력점까지의 거리이다. 따라서 이 를 역산하면 유효 단면2차모멘트 I_e를 산출할 수 있으며, 이 값을 실험에 의한 유효 단면2차모멘트로 정의하였다. Fig. 8에 실험으로부터 얻어진 유효 단면2차모멘트를 중앙부의 모멘트의 크기에 따라 나타내었으며, 동시에 국 내 기준식에 의한 I_e값도 비교를 위하여 같이 나타내었 다. 다만, 유효 단면2차모멘트의 실험값 중 가력직후의 초기 I_e값은 하중 및 처짐이 너무 작아서 신뢰도가 떨어 져 의미가 없으므로 이를 배제하고 나타내었다. 모든 실 험체에서 균열 발생 후에 유효 단면2차모멘트가 급격하 게 감소하는 것을 볼 수 있었으며, 철근비 및 다른 변수 들의 영향에 의하여 각기 다른 I_e값의 감소 추이를 보이 다가 일정한 하중에 도달한 후에는 I_e값의 감소 추이가 대체적으로 완만해지거나 일정한 양상을 보였다.

Branson¹에 의하면 처짐에 대한 유효 단면2차모멘트의 영향이 가장 민감하게 작용되는 구간은 대략 M_a/M_{cr} = 1.0~3.0(M_a = 20~80 kN·m) 범위인데, 이 구간에서 유효 단면2차모멘트가 급격히 변하고, 또한 실험과 기준식에 의 한 I_e 값을 비교해보면 실험체에 따라 상당히 차이가 있음 을 알 수 있다. 대략 M_a/M_{cr} = 2.0~3.0 (M_a = 40~80 kN·m) 범위에서 일반강도 실험체에서는 철근비와 철근직경이 가장 큰 D25 철근을 사용한 G-X25 실험체가 다른 실험 체에 비해 오차가 크게 나타났으며, 고강도 실험체에서 는 철근비와 철근직경이 가장 작은 H-Y13 실험체와 철 근비와 철근직경이 가장 큰 H-Y25 실험체에서 가장 큰 차이를 보이고 있는 것이 관찰되었다. 즉, 철근비가 균 열 후의 강성에 가장 중요한 역할을 하지만 기준식에서 이에 대한 반영이 미흡하다는 것을 알 수 있다.

한편, 철근비가 비슷하면서 철근직경이 다른 실험체인 G-X16 실험체와 G-X25 실험체의 *I_e*값을 비교해보면, 대 략 *M_a/M_{cr}*=2.0~3.0(*M_a*=40~80 kN·m) 범위에서 철근직 경이 작은 G-X16 실험체의 *I_e*값이 G-X25 실험체의 *I_e* 값에 비해 최대 1.25배 크게 측정이 된 것을 알 수 있다. 또한 고강도 실험체에서도 철근비가 비슷한 H-X16 실험 체와 H-X25 실험체를 비교해보면, 역시 철근직경이 작 은 H-X16 실험체의 유효 단면2차모멘트가 최대 1.56배

Fig. 8 Comparison of ${\sf I}_{\sf e}$ by test results and code provision

크게 측정된 것을 알 수 있다. 이것은 철근비 외에 철근 의 직경과 관련된 부재 단면의 성질이 어떠한 형태로 유 효 단면2차모멘트에 영향을 미치고 있다는 추론을 가능 하게 해준다. 그러나 H-Y13 실험체와 H-Y25 실험체의 실험에 의한 값이 이처럼 큰 차이를 보이는 반면, 기준 식에 의한 *I*_e값은 이 두 실험체에 대하여 거의 유사한 *I*_e 값을 준다. 즉, 기준식에서 이러한 영향을 고려하지 못 하고 있다는 것을 말해주는 것이다.

또한, 앞서 언급한 바와 같이 균열이 발생한 철근콘크 리트 휨 부재의 단면2차모멘트는 부재길이 방향에서의 균열 분포에 따라 크게 좌우되기 때문에 부재의 균열발 생 구간의 길이는 보의 유효 단면2차모멘트에 큰 영향 을 미치는 주요 인자이다. 그러나 국내 기준식은 단부 지지조건 및 최대 모멘트와 균열모멘트의 비에 의해 유 효 단면2차모멘트를 구하기 때문에 부재의 균열발생 길 이를 직접적으로 고려할 수 없다.

앞서 소개되었던, Al-Zaid 등⁶이 제안한 식 (7) 및 (10) 과 (11)을 이용하면 부재의 균열발생 구간의 길이를 *I*_e값 의 산정에 직접적으로 고려할 수 있을 뿐만 아니라 철 근비의 영향도 같이 고려할 수 있다. 앞서 언급되었던 식 (1), (5) 및 (7)에 의하여 구한 *I*_e값과 이들 값과 실험 값의 비를 비교, 분석하여 Tables 5 및 6에 나타내었다.

실험으로부터 얻어진 *I_e*값을 균열구간 길이를 반영한 식 (7)에 의하여 구한 *I_e*값으로 나눈 *I_{exp}*/*I_e*비를 관찰해 보 면 철근비가 낮은 G-X13, G-Y13, H-X13, H-Y13 실험체 는 $M_{cr} \sim 1.5 M_{cr}$ 부근에서 실험값이 계산값 보다 더 크게 측정된 것을 알 수 있으며, H-X16과 같은 고강도 실험 체에서도 유사한 경향을 나타낸 것을 볼 수 있다. 또한 철근비가 비슷한 G-X16과 G-X25, H-X16과 H-X25를 비 교하면 식 (7)에 의한 I_c 값은 비슷하지만, 철근직경이 큰 실험체가 철근직경이 작은 실험체에 비해 실험에 의한 값이 작게 측정이 되어 철근직경에 관련된 영향인자에 대하여 고려가 필요함을 알 수 있다.

본 연구자들은 철근콘크리트 휨 부재의 처짐은 균열 구간의 길이뿐만 아니라 균열 폭과도 밀접한 관련이 있 다고 판단하였다. 즉, 일정 단면에 대하여, 균열 폭이 커 질수록 균열의 높이가 증가하고, 휨 강성이 저하되며, 곡 률이 커지게 되어 처짐을 증가시키는 결과를 가져올 것 이기 때문이다. Gergely-Lutz¹⁰는 콘크리트 부재의 균열 폭은 주인장철근 주위의 콘크리트 단면적을 철근의 개수 로 나눈 콘크리트의 유효 인장단면적 (A)과 비례관계가 있다고 보고하였다. 이 연구에서 수행된 실험체중 유사 한 철근비를 가진 실험체에서 철근의 직경이 큰 실험체 는 상대적으로 철근의 개수가 적게 되며, 따라서 철근 한 개당 콘크리트의 유효 인장단면적 (A)가 커지게 된다. 그러므로 본 연구자들은 유사한 철근비를 가진 실험체에 서 철근직경이 큰 실험체가 철근직경이 작은 실험체에 비해 실험에 의한 값이 작게 측정된 이유를 여기에서 찾 게 된 것이다.

따라서, 이 연구에서는 유효 단면2차모멘트에 대하여

Ma M_a $I_{\rm exp}$ $I_{\rm exp}$ I<u>exp</u> lexp $I_{e, Eq.(1)}$ $I_{e, Eq.(5,9)}$ I_{e, Eq.(7,10)} $I_{\rm exp}$ $I_{e, Eq.(7,13)}$ Specimens $(kN \cdot m)$ \overline{M}_{cr} $(\times 10^{6} \, {\rm mm}^{4})$ $(\times 10^{6} \text{ mm}^{4})(\times 10^{6} \text{ mm}^{4})(\times 10^{6} \text{ mm}^{4})(\times 10^{6} \text{ mm}^{4})$ $I_{e, Eq.(1)}$ $I_{e, Eq. (5, 9)}$ $I_{e, Eq.(7, 10)}$ $I_{e, Eq. (7, 13)}$ 20.03 560.78 648.86 683.14 452.46 430.38 0.86 0.82 1.24 1.3 1.18 25.04 1.47 459.48 503.63 375.77 351.49 0.99 0.91 1.21 1.3 456.23 1.77 375.69 415.19 315.19 0.95 1.06 1.14 30.06 358.65 339.33 0.86 35.08 2.06 308.25 333.13 366.1 316.79 294.19 0.93 0.84 0.97 1.05 39.98 2.35 282.71 309.7 336.97 303.14 282.1 0.91 0.84 0.93 1 G-X13 44.99 295.14 0.92 2.64 270.18 317.66 293.99 274.35 0.92 0.85 0.98 50.01 2.94 262.43 285.84 304.57 287.4 269.14 0.92 0.91 0.98 0.86 55.03 3.23 255.34 279.62 295.35 282.61 265.59 0.91 0.86 0.9 0.96 60.04 275.31 279.05 0.91 0.9 0.96 3.53 251.76 288.65 263.11 0.87 65.06 3.82 272.23 283.65 276.23 0.9 0.89 0.94 245.45 261.31 0.87 0.97 717.67 0.9 0.96 20.03 1.18 648.87 768.03 676.33 0.84 666 30.06 1.77 565.84 521.42 586.26 541.45 539.82 1.09 0.97 1.05 1.05 40.09 497.9 473.73 2.36 522.26 496.13 490.57 1.05 0.95 1 1.01 50.01 2.94 449.3 492.73 475.41 0.98 0.91 0.95 0.96 456.88 468.8 60.04 3.53 449.32 457.36 0.94 0.91 0.92 420.92 476.41 464.07 0.88 G-X16 70.08 4.12 398.17 445.48 466.53 457.27 450.8 0.89 0.85 0.87 0.88 80.11 4.71 386.3 443.33 460.12 452.94 446.79 0.87 0.84 0.85 0.86 90.03 5.29 378.14 442.04 455.75 449.95 444.19 0.86 0.83 0.84 0.85 5.88 369.51 441.21 452.59 447.83 442.42 0.84 0.83 100.06 0.82 0.84 0.81 109.98 6.46 359.59 440.65 450.26 446.28 441.19 0.82 0.8 0.82 120.01 7.05 440.27 448.47 0.79 0.78 0.78 0.79 348.63 445.12 440.31 20.03 1.18 538.81 700.62 748.32 619.59 616.92 0.77 0.72 0.87 0.87 1.77 484.99 0.91 30.06 447.62 544.66 493.57 480.68 0.92 0.82 0.93 40.09 2.36 449.32 435.11 0.89 0.86 0.89 386.34 432.62 476.26 0.81 50.01 2.94 350.91 414.12 445.77 429.32 415.82 0.85 0.79 0.82 0.84 G-X19 60.04 3.53 335.16 405.82 429.35 418.43 406.04 0.83 0.78 0.8 0.83 70.08 4.12 320.33 419.64 411.92 0.76 0.78 401.61 400.64 0.8 0.8 80.11 4.71 307.43 399.24 413.45 407.78 397.46 0.77 0.74 0.75 0.77 90.03 5.29 297.16 397.83 409.3 404.92 395.48 0.75 0.73 0.73 0.75 100.06 5.88 282.02 396.91 406.34 402.9 394.46 0.71 0.69 0.7 0.71 1.18 771.44 0.74 0.74 20.03 497.1 720.22 672.55 668.41 0.69 0.64 1.77 593.22 30.06 440.77 526.83 548.43 533.88 0.84 0.74 0.8 0.83 40.09 2.36 399.91 479.82 529.79 503.01 487.14 0.83 0.75 0.8 0.82 2.94 0.83 0.8 0.82 50.01 384.51 463.22 500.29 482.21 467.16 0.77 60.04 3.53 371.49 455.77 483.88 470.81 457.03 0.82 0.77 0.79 0.81 G-X25 70.08 4.12 361.4 451.98 473.91 463.97 451.45 0.8 0.76 0.78 0.8 0.77 4.71 354.19 459.62 0.79 0.79 80.11 449.86 467.4 448.17 0.76 5.29 448.59 462.96 0.78 90.03 347.68 456.61 446.15 0.78 0.75 0.78 100.06 5.88 341.27 447.77 459.72 454.48 445.57 0.76 0.74 0.77 0.77 110.09 6.47 333.72 447.22 457.32 452.96 445.57 0.75 0.73 0.75 0.75 120.01 7.05 455.5 451.76 445.57 0.71 0.71 0.71 315.86 446.85 0.69 20.03 1.18 520.02 635.18 674.29 435.68 401.63 0.82 0.77 1.19 1.29 25.04 1.47 386.81 435.2 485.81 354.29 318.9 0.89 0.8 1.09 1.21 1.77 G-Y13 30.06 299.25 346.71 392.17 312.46 278.79 0.86 0.76 0.96 1.07 35.08 2.06 301.77 339.85 256.92 0.79 0.93 268.67 288.17 0.89 1.05 40.09 2.36 250.71 276.6 308.06 272.76 243.97 0.91 0.81 0.92 1.03

Table 5 Comparison of Ie (G types)

Specimens	$\begin{array}{c} M_a \\ (kN \cdot m) \end{array}$	$rac{M_a}{M_{cr}}$	I_{exp} (×10 ⁶ mm ⁴)	$I_{e, Eq.(1)}$ (×10 ⁶ mm ⁴)	$I_{e, Eq.(5,9)}$ (×10 ⁶ mm ⁴)	$I_{e, Eq.(7,10)}$ (×10 ⁶ mm ⁴)	$I_{e, Eq.(7,13)}$ (×10 ⁶ mm ⁴)	$\frac{I_{\rm exp}}{I_{e,Eq.(1)}}$	$\frac{I_{\rm exp}}{I_{e, Eq.(5,9)}}$	$\frac{I_{\rm exp}}{I_{e,Eq.(7,10)}}$	$\frac{I_{\rm exp}}{I_{e,Eq.(7,13)}}$
	45.11	2.65	238.08	261.37	287.41	262.52	235.9	0.91	0.83	0.91	1.01
G-Y13 G-Y13 G-Y19 G-Y25 Ave. S.D. C O V	50.01	2.94	232.88	251.83	273.64	255.29	230.68	0.92	0.85	0.91	1.01
	55.03	3.23	228.92	245.26	263.62	249.91	227.08	0.93	0.87	0.92	1.01
	60.04	3.53	218.61	240.72	256.32	245.9	225.51	0.91	0.85	$\begin{array}{c c} I_{exp} \\ \hline I_{e,Eq.(7,10)} \\ \hline I_{e,Eq.(7,10)} \\ \hline I_{e,E} \\ \hline 0.91 \\ \hline 0.91 \\ \hline 0.92 \\ \hline 0.89 \\ \hline 0.96 \\ \hline 0.95 \\ \hline 0.88 \\ \hline 0.85 \\ \hline 0.82 \\ \hline 0.82 \\ \hline 0.81 \\ \hline 0.81 \\ \hline 0.78 \\ \hline 0.98 \\ \hline 0.97 \\ \hline 0.88 \\ \hline 0.97 \\ \hline 0.97 \\ \hline 0.88 \\ \hline 0.97 \\ \hline 0.97 \\ \hline 0.87 \\ \hline 0.97 \\ \hline 0.$	0.97
	20.26	1.19	577.05	667.73	726.85	599.43	588.67	0.86	0.79	0.96	0.98
G-V19	30.06	1.77	434.13	439.88	511.93	456.59	435.42	0.99	0.85	0.95	1
	40.09	2.36	353.92	381.72	434.99	404.43	382.91	0.93	0.81	0.88	0.92
	50.13	2.95	322.65	361.02	399.83	380.7	360.82	0.89	0.81	0.85	0.89
0-119	60.04	3.53	301.9	351.96	381.13	367.82	349.93	0.86	0.79	0.82	0.86
	70.19	4.12	288.79	347.24	369.68	360	343.92	0.83	0.78	0.8	0.84
	80.11	4.71	276.06	344.65	362.48	355.13	340.53	0.8	0.76	0.81	0.81
	90.03	5.29	263.78	343.08	357.55	351.8	339.34	0.77	0.74	0.78	0.78
	20.03	1.18	644.59	695.99	758.64	655.68	643.71	0.93	0.85	0.98	1
	30.29	1.78	489.16	473.41	555.55	506.46	482.26	1.03	0.88	0.97	1.01
	40.21	2.36	398.18	421.57	484.25	452.44	427.99	0.94	0.82	0.88	0.93
	50.01	2.94	363.31	402.99	450.15	427.44	404.95	0.9	0.81	0.85	0.9
G V25	60.04	3.53	343.01	394.5	430.58	413.7	393.35	0.87	0.8	0.9	0.87
0-125	70.08	4.12	329.72	390.18	418.54	405.37	387.03	0.85	0.79	0.86	0.85
	80.23	4.71	319.65	387.74	410.53	399.97	383.37	0.82	0.78	0.83	0.83
	90.03	5.29	308.06	386.32	405.15	396.39	382.87	0.8	0.76	0.8	0.8
	0.83	5.88	293.13	385.38	401.13	393.74	382.87	0.76	0.73	0.77	0.77
	487.14	6.47	270.16	384.76	398.13	391.88	382.87	0.7	0.68	0.71	0.71
Ave.								0.863	0.802	0.872	0.911
S.D.								0.159	0.207	0.172	0.162
C.O.V.								18.42	25.81	19.72	17.78

Table 5 Comparison of Ie (G types) (Cuntinued)

철근직경에 의한 영향 인자를 주인장철근 주위의 콘크리 트 단면적을 철근의 개수로 나눈 유효 인장단면적의 개 념을 사용하여 이를 유효 단면2차모멘트의 산정에 반영 하고자 하였다. 우선 Al-Zaid 등이 제안한 식 (8)을 이용 하여 *m*'값을 분석하면 Fig. 9와 같으며, *M_{cr} / M_a*에 선형 비례하는 양상을 보이고, 대체적으로 철근의 직경이 큰 경우, 즉 유효인장단면적이 커질 때 *m*'값이 작아지는 것 을 관찰할 수 있다. 따라서 앞서 언급된 주요 영향인자 인 철근비 및 *M_{cr} / M_a*비와 더불어 주인장철근 한 개당 콘크리트 유효인장단면적을 같이 고려하여 *m*'값에 대한 회귀분석을 실시하였으며, 그 결과로서 아래와 같이 수 정된 제안식을 도출하였다.

$$m' = 99\rho\left(\frac{M_{cr}}{M_a}\right) - 2.345 \times 10^{-3} \sqrt{A} \ge 0$$
 (13)

여기서 A는 주인장철근 주위의 콘크리트 단면적을 철근 의 개수로 나눈 콘크리트의 유효 인장단면적 (mm²)을 말 한다.

식 (13)으로부터 구한 m'값을 식 (7)에 대입하여 유효

400 | 한국콘크리트학회 논문집 제20권 제3호 (2008)

단면2차모멘트를 구한 결과는 Tables 5 및 6에 나타내었으며, 기준식과 이 연구에서 제안된 식에 의한 I_e 값을 실 험값과 비교하여 Fig. 10에 나타내었다. 철근비가 낮은 G-X13, G-Y13, H-X13, H-Y13 실험체는 Al-Zaid 등의 연 구 결과와 마찬가지로 M_{cr} ~1.5 M_{cr} 부근에서는 실험값보 다 계산값이 더 작게 측정이 되었으나 본 제안식을 사 용하였을 경우 오차가 더 작게 나타났으며, 대체적으로 철근 한 개당 콘크리트의 유효 인장단면적 (A)를 고려한 식 (13)이 식 (10)보다 실험값에 근접한 결과를 나타내었 다. 또한 Fig. 11 (a)와 (b)에 보이는 바와 같이 기준식 (1) 보다 제안식 (13)이 실험에 의한 I_e 값을 더 정확하게 예측하였다.

따라서 이 연구에서 제안된 유효 단면2차모멘트 계산 식을 사용할 경우 기준식 및 다른 연구자들의 제안식보 다 처짐을 보다 정확하게 구할 수 있을 것으로 판단된 다. 그러나 이 제안식은 주근 직경이 D25 이하인 경우 에만 검증이 되었기 때문에, 철근 직경이 D29 이상인 경 우는 추가 실험을 통하여 이 식의 적용성을 검토할 필 요가 있으며, 모멘트 분포에 따른 영향을 효과적으로 고 려하고 있는지를 확인하기 위하여 하중 분포를 달리하여

Specimens	M _a (kN∙m)	$rac{M_a}{M_{cr}}$	I_{exp} (×10 ⁶ mm ⁴)	$(\times 10^6 \text{ mm}^4)$	$I_{e, Eq.(5,9)}$ (×10 ⁶ mm ⁴)	$I_{e, Eq.(7,10)} (\times 10^6 \text{ mm}^4)$	$I_{e, Eq.(7,13)}$ (×10 ⁶ mm ⁴)	$\frac{I_{\exp}}{I_{e, Eq.(1)}}$	$\frac{I_{\exp}}{I_{e, Eq.(5,9)}}$	$\frac{I_{\exp}}{I_{e,Eq.(7,10)}}$	$\frac{I_{\rm exp}}{I_{e,Eq.(7,13)}}$
	25.04	0.89	906.66	893.23	893.23	893.23	893.23	1.02	1.02	1.02	1.02
Specimens H-X13 H-X16 H-X19 H-X19	30.06	1.07	891.06	764.93	785.36	446.11	425.05	1.16	1.13	2	2.1
	35.08	1.25	655.71	551.47	595.69	372.25	346.88	1.19	1.1	1.76	1.89
	40.09	1.43	397.06	431.94	481.14	326.19	299.27	0.92	0.83	1.22	1.33
	45.11	1.6	252.38	359.61	407.1	295.51	268.4	0.7	0.62	0.85	0.94
	50.01	1.78	230.87	314.28	357.95	274.57	247.93	0.73	0.64	0.84	0.93
	55.03	1.96	218.78	283.1	322.33	258.78	233.01	0.77	0.68	0.85	0.94
	60.04	2.14	212.14	261.52	296.47	247.14	222.32	0.81	0.72	0.86	0.95
Specimens H-X13 H-X16 H-X19 H-X25	65.06	2.31	205.42	246.05	277.11	238.07	214.3	0.83	0.74	0.86	0.96
	70.08	2.49	200.58	234.7	262.32	231.1	208.3	0.85	0.76	0.87	0.96
	30.06	1.07	884.36	789.84	822.68	660.05	676.59	1.12	1.07	1.34	1.31
	40.09	1.43	752.04	521.5	606.83	521.86	526.72	1.44	1.24	1.44	1.43
	50.01	1.78	479.77	426.68	507.25	452.93	450.69	1.12	0.95	1.06	1.06
H-X16	60.04	2.14	405.7	384.16	452.19	413.68	407.88	1.06	0.9	0.98	0.99
	70.19	2.5	371.5	362.38	418.61	389.87	382.36	1.03	0.89	0.95	0.97
	80.11	2.85	353.38	350.45	397.27	374.75	366.53	1.01	0.89	0.94	0.96
	90.03	3.2	342.32	343.21	382.55	364.36	355.91	1	0.89	0.94	0.96
	100.06	3.56	335.62	338.52	371.86	356.93	348.5	0.99	0.9	0.94	0.96
	109.98	3.91	332.78	335.41	364.02	351.5	343.22	0.99	0.91	0.95	0.97
	120.01	4.27	328.93	333.23	357.98	347.29	339.27	0.99	0.92	0.95	0.97
	130.04	4.63	318.74	331.67	353.27	344.07	336.31	0.96	0.9	0.93	0.95
	30.06	1.07	665.36	783.51	813.79	614.61	616.09	0.85	0.82	1.08	1.08
	40.09	1.43	458.31	498.77	575.87	476.22	465.36	0.92	0.8	0.96	0.98
	50.01	1.78	362.98	398.15	469.76	409.75	394.02	0.91	0.77	0.89	0.92
	60.16	2.14	332.6	352.66	412.13	372.66	355.44	0.94	0.81	0.89	0.94
H-X19	70.08	2.49	314.32	330.1	378.84	350.58	333.42	0.95	0.83	0.9	0.94
	80.11	2.85	303.83	317.26	357.3	336.4	319.79	0.96	0.85	0.9	0.95
	90.03	3.2	297.69	309.57	342.88	326.74	310.93	0.96	0.87	0.91	0.96
	100.06	3.56	291.32	304.6	332.57	319.85	304.87	0.96	0.88	0.91	0.96
	109.98	3.91	284.18	301.3	325.1	314.82	300.65	0.94	0.87	0.9	0.95
	30.06	1.07	856.46	790.78	824.32	667.74	667.3	1.08	1.04	1.28	1.28
	40.09	1.43	482.94	524.89	612.43	528.52	515.33	0.92	0.79	0.91	0.94
	50.01	1.78	361.06	430.94	513.9	459.09	440.63	0.84	0.7	0.79	0.82
	60.04	2.14	334.61	388.81	459.1	419.74	399.74	0.86	0.73	0.8	0.84
	70.08	2.49	319.46	367.4	425.79	395.82	375.89	0.87	0.75	0.81	0.85
H-X25	80.11	2.85	313.29	355.41	404.05	380.46	361.21	0.88	0.78	0.82	0.87
	90.03	3.2	309.53	348.23	389.2	369.96	351.66	0.89	0.8	0.84	0.88
	100.06	3.56	306.67	343.58	378.39	362.46	345.12	0.89	0.81	0.85	0.89
	109.98	3.91	304.96	340.51	370.43	356.96	340.58	0.9	0.82	0.85	0.9
	120.01	4.27	302.29	338.34	364.28	352.72	337.27	0.89	0.83	0.86	0.9
	130.04	4.63	294.6	336.8	359.48	349.45	334.85	0.87	0.82	0.84	0.88
	25.04	0.89	731.41	893.23	893.23	893.23	893.23	0.82	0.82	0.82	0.82
11 3/10	30.06	1.07	409.67	760.27	783.1	445.48	411.26	0.54	0.52	0.92	1
н-ү13	35.08	1.25	278.17	539.07	588.64	364.41	326.41	0.52	0.47	0.76	0.85
	40.09	1.43	226.96	415.2	470.51	314.29	275.52	0.55	0.48	0.72	0.82

Table 6 Comparison of I_e (H types)

Specimens	M _a (kN∙m)	$rac{M_a}{M_{cr}}$	I_{exp} (×10 ⁶ mm ⁴)	$I_{e, Eq.(1)}$ (×10 ⁶ mm ⁴)	$I_{e, Eq.(5,9)}$ (×10 ⁶ mm ⁴)	$I_{e, Eq.(7,10)}$ (×10 ⁶ mm ⁴)	$I_{e, Eq.(7,13)}$ (×10 ⁶ mm ⁴)	$\frac{I_{\rm exp}}{I_{e,Eq.(1)}}$	$\frac{I_{\rm exp}}{I_{e, Eq.(5,9)}}$	$\frac{I_{\rm exp}}{I_{e,Eq.(7,10)}}$	$\frac{I_{\exp}}{I_{e,Eq.(7,13)}}$
Specimens H-Y13 H-Y19 H-Y25 H-Y25 Ave. S.D. C.O.V.	45.11	1.6	199.94	340.24	393.77	280.75	242.63	0.59	0.51	0.71	0.82
	50.01	1.78	184.07	293.27	342.6	257.79	220.91	0.63	0.54	0.71	0.83
	55.14	1.96	179.65	260.37	304.67	240.3	204.99	0.69	0.59	0.75	0.88
	60.04	2.14	172.7	238.59	278.23	227.74	194.02	0.72	0.62	0.76	0.89
	30.06	1.07	852.32	776.21	810.75	614.5	608.2	1.1	1.05	1.39	1.4
	40.21	1.43	435.85	470.54	559.4	459.71	439.5	0.93	0.78	0.95	0.99
H-Y19	50.01	1.78	325.49	365.21	448.28	385.45	360.78	0.89	0.73	0.84	0.9
	60.04	2.14	289.22	317.08	386.69	343.69	318.29	0.91	0.75	0.84	0.91
п-119	70.08	2.49	270.8	292.62	349.88	318.57	293.93	0.93	0.77	0.85	0.92
	80.11	2.85	261.73	278.93	326.21	302.51	279.08	0.94	0.8	0.87	0.94
	90.03	3.2	254.66	270.73	310.24	291.55	269.51	0.94	0.82	0.87	0.94
	100.06	3.56	248.1	265.43	298.74	283.73	263.03	0.93	0.83	0.87	0.94
	30.18	1.07	442.75	776.52	817.21	663.63	655.02	0.57	0.54	0.67	0.68
	40.09	1.43	333.12	494.85	597.18	512.07	488.56	0.67	0.56	0.65	0.68
	50.01	1.78	281.47	393.24	491.1	432.75	403.9	0.72	0.57	0.65	0.7
	60.04	2.14	268.38	347.66	431.24	387.6	357.85	0.77	0.62	0.69	0.75
U V25	70.19	2.5	261.51	324.32	394.1	359.74	330.91	0.81	0.66	0.73	0.79
11-123	80.11	2.85	258.6	311.54	370.15	342.21	314.82	0.83	0.7	0.76	0.82
	90.03	3.2	257.1	303.78	353.42	330.13	304.36	0.85	0.73	0.78	0.84
	100.06	3.56	252.85	298.75	341.15	321.47	297.27	0.85	0.74	0.79	0.85
	109.98	3.91	250.82	295.42	332.05	315.14	292.4	0.85	0.76	0.8	0.86
	120.01	4.27	239.04	293.08	324.97	310.24	288.9	0.82	0.74	0.77	0.83
Ave.								0.886	0.788	0.917	0.969
S.D.								0.039	0.07	0.06	0.054
C.O.V.								4.4	8.88	6.54	5.57

Table 6 Comparison of I_e (H types) (Continued)

Fig. 9 Variation of the power m` with ratio M_{cr}/M_{a}

추가적인 실험적 연구를 진행하고 있다.

5.결 론

이 연구에서는 철근콘크리트 단순보에서 철근비 및 철

402 | 한국콘크리트학회 논문집 제20권 제3호 (2008)

근 직경, 피복두께, 콘크리트강도가 유효 단면2차모멘트 에 미치는 영향을 실험적으로 검증하고 제안식을 도출하 였으며, 위의 분석 결과를 통해 얻어진 내용을 요약하면 다음과 같다.

1) 유효 단면2차모멘트는 Ie값은 모든 실험체에서 균열

Fig. 10 Comparison of I_e by code provision and suggested model

Fig. 11 Comparison of by experimental Ie and computed Ie for tested beams using the different models

발생 후에 급격하게 감소한 후 일정한 하중에 도달 한 후에는 값의 거의 일정한 양상을 보였다.

- 동일한 철근비를 가진 실험체에서 철근직경이 큰 경우에 유효 단면2차모멘트에 보다 큰 영향을 미치 는 것으로 나타났다. 특히, 철근비가 비슷한 D16 철 근과 D25 철근을 사용한 실험체를 비교하면, 일반 강도에서는 철근직경이 작은 D16을 사용한 실험체 가 최대 1.25배, 고강도콘크리트에서는 최대 1.56배 더 크게 측정되었다.
- 3) 이 연구에서 모멘트 분포, 철근비 및 철근 한 개당 콘크리트의 유효 인장단면적을 고려하여 유효 단면 2차모멘트 예측식을 제안하였으며, 국내 구조설계 기준 및 다른 연구자들의 제안식보다 실험값에 더 가까운 것으로 나타나 처짐을 보다 정확하게 구할 수 있는 것으로 판단된다.
- 4) 이 연구에서 제안된 유효 단면2차모멘트는 철근직 경이 D25 이하인 경우에만 검증이 되었으므로, 철 근직경이 D29 이상일 경우 추가 실험을 통하여 이

식의 적용이 가능한지 검토할 필요가 있으며, 모멘 트 분포에 따른 유효 단면2차모멘트의 변화를 효과 적으로 예측하고 있는지에 대한 추가적 연구를 진 행하고 있다.

감사의 글

이 연구는 건설교통부가 출연하고 한국건설교통기술평 가원에서 위탁시행한 2004년도 건설핵심기술연구개발사 업 (과제번호: 04핵심기술C02-02)의 연구비 지원에 의하 여 수행되었으며, 이에 감사드립니다.

참고문헌

- Branson, D. E., Instantaneous and Time Dependent Deflections of Simple and Continuos Reinforced Concrete Beams, HPR Report, No. 7 Part 1, Alabama Highway Department/ U.S. Bureau of Public Roads, Aug. 1963/1965, 78 pp.
- ACI Committee 435, Deflections of Reinforced Concrete Flexural Members, 435.2R-66, American Concrete Institute, 1984, pp. 637~674.
- 3. 한국콘크리트학회, 콘크리트구조설계기준 해설, 한국콘 크리트학회, 2003, 405 pp.
- 4. Grossman, J. S., "Simplified Computations for Effective

Moment of Inertia and Minimum Thickness to Avoid Deflection Computations," *ACI Journal*, Vol. 78, No. 6, 1981, pp. 423~434.

- Rangan, B. V., "Control of Beam Deflections by Allowable Span-Depth Ratios," *ACI Journal Proceedings*, Vol. 79, No. 5, 1982, pp. 372~377.
- Al-Zaid, R. Z., Al-Shaikh, A. H., and Abu-Hussein, M. M., "Effect of Reinforcement Ratio on the Effective Moment of Inertia of Reinforced Concrete Beams," *ACI Structural Journal*, Vol. 88, No. 2, 1991, pp. 184~190.
- Al-Shaikh, A. H. and Al-Zaid, R. Z., "Effect of Reinforcement Ratio on the Effective Moment of Inertia of Reinforced Concrete Beams," *ACI Structural Journal*, Vol. 65, No. 9, 1993, pp. 144~149.
- ACI Committe 318, Building Code Requirements for Structural Concreteand Commentary (ACI318 M-05), AmericanConcrete Institute, 2005, 436 pp.
- 9. 이승배, 장수연, 김상식, 김강수, "철근콘크리트 단순 보 의 유효 단면2차모멘트에 대한 실험적 고찰," 한국콘크 리트학회 학술발표회 논문집, 19권 2호, 2007, pp. 9~12.
- Gergely, P. and Lutz, L. A., "Maximum Crack Width in Reinforced Concrete Flexural Members," *Causes, Mechanism and Control of Cracking in Concrete*, ACI Publication SP-20, American Concrete Institute, Detroit, 1973, pp. 87~117.

핵심용어 : 유효 단면2차모멘트, 균열 단면2차모멘트, 휨 강성, 처짐, 사용하중

요 약 철근콘크리트 휨 부재에서 현행 설계기준들의 처짐 계산 규정은 콘크리트의 균열 후 보의 휨강성이 감소하는 것을 반영한 유효 단면2차모멘트의 개념을 적용하고 있다. 그러나 기준식의 유효 단면2차모멘트는 하중을 받는 보의 최대 모멘트와 균열모멘트에 의하여 계산하며, 처짐에 영향을 미치는 경간, 단부구속, 단면의 크기, 하중 분포, 재료 및 단면 성질, 균열의 양과 확장 등의 여러 영향인자들에 대하여는 적절한 고려가 이루어지지 않았다. 따라서, 이 연구에서는 철근콘크리트 단순보를 대상으로 처짐 계산에 필요한 유효 단면2차모멘트에 대한 실험 자료를 제공하고, 국내 기준식 및 다른 연구자들의 제안식을 수정 보완하여 제안하는 것을 목적으로 하였다. 콘크리트강도와 피복두께, 철근비 및 철근 직경을 주요변수로 하여 총 14개의 철근콘크리트 보 실험체를 제작하였으며, 실험을 통하여 구한 유효 단면2 차모멘트와 설계 기준에 의한 값, 기존의 제안식 및 본 연구에서 제안된 식에 의한 값들을 비교·분석하였다. 실험 결과를 바탕으로 균열 구간의 길이, 철근비 및 철근 한 개당 콘크리트의 유효 인장단면적을 고려하여 이 연구에서 제안 한 유효 단면2차모멘트 예측식은 기존의 제안식들에 비하여 실험값에 더욱 근접한 결과를 나타내었다.