• Title/Summary/Keyword: inducible resistance

Search Result 88, Processing Time 0.031 seconds

Transgenic Rice Plants Expressing an Active Tobacco Mitogen-activated Protein Kinase Kinase Induce Multiple Defense Responses

  • Jeong, Jin-A;Yoo, Seung-Jin;Yang, Douck-Hee;Shin, Seo-Ho;Lee, Myung-Chul;Cho, Baik-Ho;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2008
  • It is well known that NtMEK2, a tobacco MAPK kinase, is the upstream kinase of both salicylic acid-induced protein kinase and wound-induced protein kinase. In addition, expression of $NtMEK2^{DD}$, a constitutively active mutant of NtMEK2, is known to induce multiple defense responses in tobacco. In this study, transgenic rice plants that contained an active or inactive mutant of NtMEK2 under the control of a steroid inducible promoter were generated and used to determine if a similar MAPK cascade is involved in disease resistance in rice. The expression of $NtMEK2^{DD}$ in transgenic rice plants resulted in HR-like cell death. The observed cell death was preceded by the activation of endogenous rice 48-kDa MBP kinase, which is also activated by Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice. In addition, prolonged activation of the MAPK induced the generation of hydrogen peroxide and up-regulated the expression of defense-related genes including the pathogenesis-related genes, peroxidases and glutathione S-transferases. These results demonstrate that NtMEK2 is functionally replaceable with rice MAPK kinase in inducing the activation of the downstream MAPK, which in turn induces multiple defense responses in rice.

Expression of a Tandemly Arrayed Plectasin Gene from Pseudoplectania nigrella in Pichia pastoris and its Antimicrobial Activity

  • Wan, Jin;Li, Yan;Chen, Daiwen;Yu, Bing;Zheng, Ping;Mao, Xiangbing;Yu, Jie;He, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.461-468
    • /
    • 2016
  • In recent years, various naturally occurring defence peptides such as plectasin have attracted considerable research interest because they could serve as alternatives to antibiotics. However, the production of plectasin from natural microorganisms is still not commercially feasible because of its low expression levels and weak stability. A tandemly arrayed plectasin gene (1,002 bp) from Pseudoplectania nigrella was generated using the isoschizomer construction method, and was inserted into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strain yielded 143 μg/ml recombinant plectasin (Ple) under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Ple was estimated by SDS-PAGE to be 41 kDa. In vitro studies have shown that Ple efficiently inhibited the growth of several gram-positive bacteria such as Streptococcus suis and Staphylococcus aureus. S. suis is the most sensitive bacterial species to Ple, with a minimum inhibitory concentration (MIC) of 4 μg/ml. Importantly, Ple exhibited resistance to pepsin but it was quite sensitive to trypsin and maintained antimicrobial activity over a wide pH range (pH 2.0 to 10.0). P. pastoris offers an attractive system for the cost-effective production of Ple. The antimicrobial activity of Ple suggested that it could be a potential alternative to antibiotics against S. suis and S. aureus infections.

ermK Leader Peptide : Amino Acid Sequence Critical for Induction by Erythromycin

  • Kwon, Ae-Ran;Min, Yu-Hong;Yoon, Eun-Jeong;Kim, Jung-A;Shim, Mi-Ja;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1154-1157
    • /
    • 2006
  • The ermK gene from Bacillus lichenformis encodes an inducible rRNA methylase that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics. The ermK mRNA leader sequence has a total length of 357 nucleotides and encodes a 14-amino acid leader peptide together with its ribosome binding site. The secondary structure of ermK leader mRNA and a leader peptide sequence have been reported as the elements that control expression. In this study, the contribution of specific leader peptide amino acid residues to induction of ermK was studied using the PCR-based megaprimer mutation method. ermK methylases with altered leader peptide codons were translationally fused to E. coli ${\beta}-galactosidase$ reporter gene. The deletion of the codons for Thr-2 through Ser-4 reduced inducibility by erythromycin, whereas that for Thr-2 and His-3 was not. The replacement of the individual codons for Ser-4, Met-5 and Arg-6 with termination codon led to loss of inducibility, but stop mutation of codon Phe-9 restored inducibility by erythromycin. Collectively, these findings suggest that the codons for residue 4, 5 and 6 comprise the critical region for induction. The stop mutation at Leu-7 expressed constitutively ermK gene. Thus, ribosome stalling at codon 7 appears to be important for ermK induction.

Characterization of an Extracytoplasmic Chaperone Spy in Protecting Salmonella against Reactive Oxygen/Nitrogen Species

  • Park, Yoon Mee;Lee, Hwa Jeong;Bang, Iel Soo
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Antimicrobial actions of reactive oxygen/nitrogen species (ROS/RNS) derived from products of NADPH oxidase and inducible nitric oxide (NO) synthase in host phagocytes inactivate various bacterial macromolecules. To cope with these cytotoxic radicals, pathogenic bacteria have evolved to conserve systems necessary for detoxifying ROS/RNS and repairing damages caused by their actions. In response to these stresses, bacteria also induce expression of molecular chaperones to aid in ameliorating protein misfolding. In this study, we explored the function of a newly identified chaperone Spy, that is localized exclusively in the periplasm when bacteria exposed to conditions causing spheroplast formation, in the resistance of Salmonella Typhimurium to ROS/RNS. A spy deletion mutant was constructed in S. Typhimurium by a PCR-mediated method of one-step gene inactivation with ${\lambda}$ Red recombinase, and subjected to ROS/RNS stresses. The spy mutant Salmonella showed a modest decrease in growth rate in NO-producing cultures, and no detectable difference of growth rate in $H_2O_2$ containing cultures, compared with that of wild type Salmonella. Quantitative RT-PCR analysis showed that spy mRNA levels were similar regardless of both stresses, but were increased considerably in Salmonella mutants lacking the flavohemoglobin Hmp, which are incapable of NO detoxification, and lacking an alternative sigma factor RpoS, conferring hypersusceptibility to $H_2O_2$. Results demonstrate that Spy expression can be induced under extreme conditions of both stresses, and suggest that the protein may have supportive roles in maintaining proteostasis in the periplasm where various chaperones may act in concert with Spy, thereby protecting bacteria against toxicities of ROS/RNS.

Studies on a PR4 Gene for Breeding Disease Resistant Forage Crops (내병성 목초 품종개량을 위한 PR4 유전자의 연구)

  • Cha, Joon-Yung;Ermawati, Netty;Jung, Min-Hee;Kim, Ki-Yong;Son, Dae-Young
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.4
    • /
    • pp.241-248
    • /
    • 2007
  • Cytokinins are essential plant hormones that play crucial roles in various aspects of plant growth and development. By using mRNA differential display, we isolated a cytokinine-inducible cDNA encoding pathogenesis-related (PR) 4 from Arabidopsis amp1 mutant. The full-length PR4 cDNA, designated AtPR4, contains an open reading frame of 212 amino acids with calculated molecular mass of 22,900 Da and isoelectric point (pI) of 7.89. Genomic DNA blotting showed that the Arabidopsis genome has one copy of AtPR4. AtPR4 mRNA was induced by cytokinin and NaCl, but decreased by SA or JA treatment. PR proteins are induced in response to pathogen attack. Thus the AtPR4 gene isolated in this study may be a useful candidate for genetic engineering of forage crops for increased tolerance against pathogen.

Isoforms of Glucose 6-Phosphate Dehydrogenase in Deinococcus radiophilus

  • Sung, Ji-Youn;Lee, Young-Nam
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.318-325
    • /
    • 2007
  • Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in Deinococcus radiophilus, an extraordinarily UV-resistant bacterium, was investigated to gain insight into its resistance as it was shown to be involved in a scavenging system of superoxide $(O_2^{-1})$ and peroxide $(O_2^{-2})$ generated by UV and oxidative stresses. D. radiophilus possesses two G6PDH isoforms: G6PDH-1 and G6PDH-2, both showing dual coenzyme specificity for NAD and NADP. Both enzymes were detected throughout the growth phase; however, the substantial increase in G6PDH-1 observed at stationary phase or as the results of external oxidative stress indicates that this enzyme is inducible under stressful environmental conditions. The G6PDH-1 and G6PDH-2 were purified 122- and 44-fold (using NADP as cofactor), respectively. The purified G6PDH-1 and G6PDH-2 had the specific activity of 2,890 and 1,033 U/mg protein (using NADP as cofactor) and 3,078 and 1,076 U/mg protein (using NAD as cofactor), respectively. The isoforms also evidenced distinct structures; G6PDH-1 was a tetramer of 35 kDa subunits, whereas G6PDH-2 was a dimer of 60kDa subunits. The pIs of G6PDH-1 and G6PDH-2 were 6.4 and 5.7, respectively. Both G6PDH-1 and G6PDH-2 were inhibited by both ATP and oleic acid, but G6PDH-1 was found to be more susceptible to oleic acid than G6PDH-2. The profound inhibition of both enzymes by ${\beta}-naphthoquinone-4-sulfonic$ acid suggests the involvement of lysine at their active sites. $Cu^{2+}$ was a potent inhibitor to G6PDH-2, but a lesser degree to G6PDH-1. Both G6PDH-1 and G6PDH-2 showed an optimum activity at pH 8.0 and $30^{\circ}C$.

Analysis on the Substrate Specificity and Stability of Hansenula polymorpha Alcohol Oxidase (Hansenula polymorpha 알코올 산화효소의 기질특이성 및 안정성 분석)

  • Jegal, Hyang;Cho, Hyun-Young;Kim, Eun-Ho;Kong, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • An alcohol oxidase from Hansenula polymorpha was strongly induced when cells were grown with 0.5% methanol supplementation as the carbon source. The induced Hansenula polymorpha alcohol oxidase was purified to electrophoretic homogeneity by using DEAE-Sephacel and Mono Q column chromatographys. The enzyme oxidized mainly primary aliphatic alcohols and exhibited high substrate specificity towards ethanol and methanol. The activity of the enzyme optimally proceeded at pH 8.5 and $50^{\circ}C$. The midpoint of the temperature-stability curve for the enzyme was approximately $52^{\circ}C$ and the enzyme was not completely inactivated even at $65^{\circ}C$ temperature. The enzyme showed resistance toward detergents and highly stable over 7 weeks of storage condition. This Hansenula polymorpha alcohol oxidase may be useful for the enzymatic determination of alcohol and for the industrial production of alcohols and aldehydes.

The Cytoprotective Action of Portulaca oleracea 70% EtOH Extracts via the Heme Oxygenase-1 on Hydrogen Peroxide-induced Oxidative Stress in Human Keratinocyte HaCaT Cells (마치현 70% 에탄올 추출물의 Heme Oxygenase-1 발현을 통한 산화적 스트레스에 대한 사람각질형성세포 보호 효과)

  • Seo, Seung-Hee;Jeong, Gil-Saeng
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.116-122
    • /
    • 2015
  • Keratinocytes are first barrier against outer challenges on skin. However, it is still largely unknown about effective protectors against ultraviolet B (UVB), and oxidative stress in human keratinocyte, HaCaT cells. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of skin disorders. Therefore, the purpose of this study was to evaluate the effect of Portulaca oleracea 70% EtOH extracts against hydrogen peroxide (H2O2)-induced oxidative stress in human keratinocytes, HaCaT cells. P. oleracea 70% EtOH extracts showed the potent protective effects on H2O2-induced toxicity by induced the expression of HO-1 in human keratinocyte, HaCaT cells. Furthermore, P. oleracea 70 % EtOH extracts caused the nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in human keratinocytes, HaCaT cells. In addition, we found that treatment with c-Jun N-terminal kinase (JNK) inhibitor (SP600125) reduced P. oleracea 70% EtOH extracts-induced HO-1 expression, and JNK inhibitor (SP600125) also inhibited protective effects by P. oleracea 70% EtOH extracts. Therefore, these results suggest that P. oleracea 70 % EtOH extracts increases cellular resistance to H2O2-induced oxidative injury in human keratinocyte, HaCaT cells, presumably through JNK pathway-Nrf2-dependent HO-1 expression.

Antidiabetic Effects of Mixed Extract from Dendropanax morbiferus, Broussonetia kazinoki, and Cudrania tricuspidata (황칠, 닥나무, 꾸지뽕 혼합 추출물의 항당뇨 효과)

  • Kim, Sol;Kim, Sang-Jun;Oh, Junseok;Hong, Jae-Heoi;Kim, Seon-Young
    • Herbal Formula Science
    • /
    • v.27 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Dengropanax morfiferus (D), Broussonitia kazinoki (B), and Cudriania tricuspidata (E), a widely cultivated species in South Korea, has been used as traditional medicine to treat numerous diseases. In this study, we evaluated the antidiabetic effects in a various signaling mechanisms using mixed extract and major component contents were analyzed by HPLC in the combined extracts from Dengropanax morfiferus, Broussonitia kazinoki, and Cudriania tricuspidata (DBCE). DBCE inhibited ${\alpha}$-glucosidase and ${\alpha}$-amylase activation and showed potent antioxidant effects, which are evaluated using DPPH, ABTS, and SOD assay. Cytokines, which are released by inflammatory cells in pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. DBCE showed the protective effects in RINm5F cells against cytokines-induced damage by suppressing inducible nitric oxide (NO) synthase and COX-2 expression and NO production. Insulin resistance is the primary characteristic of type 2 diabetes. Therefore, the regulatory effect of DBCE on glucose uptake and production are investigated in insulin-responsive human HepG2 cells. DBCE stimulated glucose uptake, prevented Glut2 and phosphor-IRS1 downregulation induced by high glucose (HG, 30 mM). Moreover, DBCE pretreatment diminished glucose levels, PEPCK and G6Pase overexpression provoked by HG. These findings suggest that DBCE might be used for diabetes treatment through alpha-glucosidase or alpha-amylase activity regulation, pancreatic beta cell protection, hepatic glucose sensitivity improvement. Cytokines, which are released by inflammatory cells' infiltrations around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus.

Pyruvate Dehydrogenase Kinase Protects Dopaminergic Neurons from Oxidative Stress in Drosophila DJ-1 Null Mutants

  • Lee, Yoonjeong;Kim, Jaehyeon;Kim, Hyunjin;Han, Ji Eun;Kim, Sohee;Kang, Kyong-hwa;Kim, Donghoon;Kim, Jong-Min;Koh, Hyongjong
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.454-464
    • /
    • 2022
  • DJ-1 is one of the causative genes of early-onset familial Parkinson's disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.