Browse > Article
http://dx.doi.org/10.4014/jmb.1508.08091

Expression of a Tandemly Arrayed Plectasin Gene from Pseudoplectania nigrella in Pichia pastoris and its Antimicrobial Activity  

Wan, Jin (Institute of Animal Nutrition, Sichuan Agricultural University)
Li, Yan (Institute of Animal Nutrition, Sichuan Agricultural University)
Chen, Daiwen (Institute of Animal Nutrition, Sichuan Agricultural University)
Yu, Bing (Institute of Animal Nutrition, Sichuan Agricultural University)
Zheng, Ping (Institute of Animal Nutrition, Sichuan Agricultural University)
Mao, Xiangbing (Institute of Animal Nutrition, Sichuan Agricultural University)
Yu, Jie (Institute of Animal Nutrition, Sichuan Agricultural University)
He, Jun (Institute of Animal Nutrition, Sichuan Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.3, 2016 , pp. 461-468 More about this Journal
Abstract
In recent years, various naturally occurring defence peptides such as plectasin have attracted considerable research interest because they could serve as alternatives to antibiotics. However, the production of plectasin from natural microorganisms is still not commercially feasible because of its low expression levels and weak stability. A tandemly arrayed plectasin gene (1,002 bp) from Pseudoplectania nigrella was generated using the isoschizomer construction method, and was inserted into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strain yielded 143 μg/ml recombinant plectasin (Ple) under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Ple was estimated by SDS-PAGE to be 41 kDa. In vitro studies have shown that Ple efficiently inhibited the growth of several gram-positive bacteria such as Streptococcus suis and Staphylococcus aureus. S. suis is the most sensitive bacterial species to Ple, with a minimum inhibitory concentration (MIC) of 4 μg/ml. Importantly, Ple exhibited resistance to pepsin but it was quite sensitive to trypsin and maintained antimicrobial activity over a wide pH range (pH 2.0 to 10.0). P. pastoris offers an attractive system for the cost-effective production of Ple. The antimicrobial activity of Ple suggested that it could be a potential alternative to antibiotics against S. suis and S. aureus infections.
Keywords
Plectasin; expression; purification; Pichia pastoris; antimicrobial activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brinch KS, Sandberg A, Baudoux P, Van Bambeke F, Tulkens PM, Frimodt-Møller N, et al. 2009. Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model. Antimicrob. Agents Chemother. 53: 4801-4808.   DOI
2 Athmaram TN, Saraswat S, Singh AK, Rao MK, Gopalan N, Suryanarayana VVS, Rao PVL. 2012. Influence of copy number on the expression levels of pandemic influenza hemagglutinin recombinant protein in methylotrophic yeast Pichia pastoris. Virus Genes 45: 440-451.   DOI
3 Barton MD. 2000. Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 13: 279-299.   DOI
4 Buckholz RG, Gleeson MA. 1991. Yeast systems for the commercial production of heterologous proteins. Nat. Biotechnol. 9: 1067-1072.   DOI
5 Cereghino JL, Cregg JM. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24: 45-66.   DOI
6 Dhople V, Krukemeyer A, Ramamoorthy A. 2006. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. BBA Biomembr. 1758: 1499-1512.   DOI
7 Hancock REW, Patrzykat A. 2002. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets 2: 79-83.   DOI
8 Hancock REW, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557.   DOI
9 Jing XL, Luo XG, Tian WJ, Lv LH, Jiang Y, Wang N, Zhang TC. 2010. High-level expression of the antimicrobial peptide plectasin in Escherichia coli. Curr. Microbiol. 61: 197-202.   DOI
10 Hara S, Mukae H, Sakamoto N, Ishimoto H, Amenomori M, Fujita H, et al. 2008. Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem. Biophys. Res. Commun. 374: 709-713.   DOI
11 Hunt I. 2005. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr. Purif. 40: 1-22.   DOI
12 Iwatani S, Zendo T, Yoneyama F, Nakayama J, Sonomoto K. 2007. Characterization and structure analysis of a novel bacteriocin, lacticin Z, produced by Lactococcus lactis QU 14. Biosci. Biotechnol. Biochem. 71: 1984-1992.   DOI
13 Jonasson P, Nygren PÅ, Jörnvall H, Johansson BL, Wahren J, Uhlén M, Ståhl S. 2000. Integrated bioprocess for production of human proinsulin C-peptide via heat release of an intracellular heptameric fusion protein. J. Biotechnol. 76: 215-226.   DOI
14 Kim H K, Chun DS, Kim J S, Yun CH, Lee JH, Hong SK, Kang DK. 2006. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli. Appl. Microbiol. Biotechnol. 72: 330-338.   DOI
15 Kim JM, Jang SA, Yu BJ, Sung BH, Cho JH, Kim SC. 2008. High-level expression of an antimicrobial peptide histonin as a natural form by multimerization and furin-mediated cleavage. Appl. Microbiol. Biotechnol. 78: 123-130.   DOI
16 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI
17 Liu YF, Luo JC, Xu CY, Ren FC, Peng C, Wu GY, Zhao JD. 2000. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiol. 122: 1015-1024.   DOI
18 Luo HY, Huang HQ, Yang PL, Wang YR, Yuan TZ, Wu NF, et al. 2007. A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr. Microbiol. 55: 185-192.   DOI
19 Lee SJ, Lee JH, Jin HJ, Lee JH, Ryu HY, Kim Y, et al. 2000. A novel technique for the effective production of short peptide analogs from concatameric short peptide multimers. Mol. Cells 10: 236-240.   DOI
20 Lewis RV, Hinman M, Kothakota S, Fournier MJ. 1996. Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expr. Purif. 7: 400-406.   DOI
21 Maemoto A, Qu X, Rosengren KJ, Tanabe H, Henschen-Edman A, Craik DJ, Ouellette AJ. 2004. Functional analysis of the α-defensin disulfide array in mouse cryptdin-4. J. Biol. Chem. 279: 44188-44196.   DOI
22 Monroe S, Polk R. 2000. Antimicrobial use and bacterial resistance. Curr. Opin. Microbiol. 3: 496-501.   DOI
23 Murphey ED, Sherwood ER. 2008. Pretreatment with the gram-positive bacterial cell wall molecule peptidoglycan improves bacterial clearance and decreases inflammation and mortality in mice challenged with Pseudomonas aeruginosa. Microbes Infect. 10: 1244-1250.   DOI
24 Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sönksen CP, Ludvigsen S, et al. 2005. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437: 975-980.   DOI
25 Romanos MA, Scorer CA, Clare JJ. 1992. Foreign gene expression in yeast: a review. Yeast 8: 423-488.   DOI
26 Schwarz S, Kehrenberg C, Walsh TR. 2001. Use of antimicrobial agents in veterinary medicine and food animal production. Int. J. Antimicrob. Agents 17: 431-437.   DOI
27 Singh MP, Greenstein M. 2000. A ntibacterial l eads from microbial natural products discovery. Curr. Opin. Drug Discov. Devel. 3: 167-176.
28 Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, et al. 2010. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328: 1168-1172.   DOI
29 Schnorr KM, Hansen MT, Mygind PH, Segura DR, Hoegenh Kristensen HH, et al. 2011. Antimicrobial polypeptides from Pseudoplectania nigrella. US Patent 7,972,814.
30 Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG. 2002. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA 99: 6434-6439.   DOI
31 Tanabe H, Ayabe T, Maemoto A, Ishikawa C, Inaba Y, Sato R, et al. 2007. Denatured human α-defensin attenuates the bactericidal activity and the stability against enzymatic digestion. Biochem. Biophys. Res. Commun. 358: 349-355.   DOI
32 Tian ZG, Dong TT, Yang YL, Teng D, Wang JH. 2009. Expression of antimicrobial peptide LH multimers in Escherichia coli C43 (DE3). Appl. Microbiol. Biotechnol. 83: 143-149.   DOI
33 Tian ZG, Teng D, Yang YL, Luo J, Feng XJ, Fan Y, et al. 2007. Multimerization and fusion expression of bovine lactoferricin derivative LfcinB15-W4,10 in Escherichia coli. Appl. Microbiol. Biotechnol. 75: 117-124.   DOI
34 Vizioli J, Salzet M. 2002. Antimicrobial peptides versus parasitic infections? Trends Parasitol. 18: 475-476.   DOI
35 Zhang J, Yang YL, Teng D, Tian ZG, Wang SR, Wang JH. 2011. Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expr. Purif. 78: 189-196.   DOI
36 Wang XQ, Yang F, Liu C, Zhou HJ, Wu GY, Qiao SY, et al. 2012. Dietary supplementation with the probiotic Lactobacillus fermentum I5007 and the antibiotic aureomycin differentially affects the small intestinal proteomes of weanling piglets. J. Nutr. 142: 7-13.   DOI
37 Yamada O, Sakamoto K, Tominaga M, Nakayama T, Koseki T, Fujita A, Akita O. 2005. Cloning and heterologous expression of the antibiotic peptide (ABP) genes from Rhizopus oligosporus NBRC 8631. Biosci. Biotechnol. Biochem. 69: 477-482.   DOI
38 Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.   DOI