Browse > Article

Isoforms of Glucose 6-Phosphate Dehydrogenase in Deinococcus radiophilus  

Sung, Ji-Youn (Division of Life Sciences, College of Natural Sciences, Chungbuk National University)
Lee, Young-Nam (Division of Life Sciences, College of Natural Sciences, Chungbuk National University)
Publication Information
Journal of Microbiology / v.45, no.4, 2007 , pp. 318-325 More about this Journal
Abstract
Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in Deinococcus radiophilus, an extraordinarily UV-resistant bacterium, was investigated to gain insight into its resistance as it was shown to be involved in a scavenging system of superoxide $(O_2^{-1})$ and peroxide $(O_2^{-2})$ generated by UV and oxidative stresses. D. radiophilus possesses two G6PDH isoforms: G6PDH-1 and G6PDH-2, both showing dual coenzyme specificity for NAD and NADP. Both enzymes were detected throughout the growth phase; however, the substantial increase in G6PDH-1 observed at stationary phase or as the results of external oxidative stress indicates that this enzyme is inducible under stressful environmental conditions. The G6PDH-1 and G6PDH-2 were purified 122- and 44-fold (using NADP as cofactor), respectively. The purified G6PDH-1 and G6PDH-2 had the specific activity of 2,890 and 1,033 U/mg protein (using NADP as cofactor) and 3,078 and 1,076 U/mg protein (using NAD as cofactor), respectively. The isoforms also evidenced distinct structures; G6PDH-1 was a tetramer of 35 kDa subunits, whereas G6PDH-2 was a dimer of 60kDa subunits. The pIs of G6PDH-1 and G6PDH-2 were 6.4 and 5.7, respectively. Both G6PDH-1 and G6PDH-2 were inhibited by both ATP and oleic acid, but G6PDH-1 was found to be more susceptible to oleic acid than G6PDH-2. The profound inhibition of both enzymes by ${\beta}-naphthoquinone-4-sulfonic$ acid suggests the involvement of lysine at their active sites. $Cu^{2+}$ was a potent inhibitor to G6PDH-2, but a lesser degree to G6PDH-1. Both G6PDH-1 and G6PDH-2 showed an optimum activity at pH 8.0 and $30^{\circ}C$.
Keywords
iso-G6PDH; dual coenzyme specificity; D. radiophilus; UV resistant bacterium;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Esposito, S., S. Carfagna, G. Massaro, V. Vona, and V.D.M. Rigano. 2001. Glucose-6-phospahtedehydrogenase in barley roots: kinetic properties and localization of the isoforms. Planta 212, 627-634   DOI
2 Halliwell, B. and J.M.C. Gutteridge. 1999. Antioxidant defenses, p. 105-159. In Free Radicals in Biology and Medicine, 3rd (ed) Oxford Science Publications, Oxford, UK
3 Lowry, O.H., N.J. Rosebrough, A.C. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275   PUBMED
4 Oh, K.A. and Y.N. Lee. 1998. Purification and characterization of catalase-2 of Deinococcus radiophilus ATCC 27603. J. Biochem. Mol. Biol. 31, 144-148
5 Tian, W-N., L. D. Braunstein, K. Apse, J. Pang, M. Rose, X. Tian, and R.C. Stanton. 1999. Importance of glucose-6-phsopahte dehydrogenase activity in cell death. Am. J. Physiol. (Cell Physiol. 45) 276, C1121-C1131   DOI
6 Vander Wyk, J.C. and T.G. Lessie. 1974. Purification and characterization of the Pseudomonas multivorans glucose-6-phosphate dehydrogenase active with nicotinamide adenine dinucleotide. J. Bacteriol. 120, 1033-1042   PUBMED
7 Yun, Y.S. and Y.N. Lee. 2003. Production of superoxide dismutase by Deinococcus radiophilus. J. Biochem. Mol. Biol. 36, 282-287   DOI   PUBMED
8 Brita, E.L., R.E. Wolf, Jr., M.C. Dinauer, Y. Xu, and F.C. Fang. 1999. Glucose-6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect. Immun. 67, 436-438   PUBMED
9 Carroll, J.D., M.J. Daly, and K.W. Minton. 1996. Expression of recA in Deinococcus radiodurans. J. Bacteriol. 178, 130-135   DOI   PUBMED
10 Purwantini, E. and L. Daniels. 1996. Purification of a novel coenzyme $F_{420}$-dependent glucose phosphate dehydrogenase from Mycobacteium smegmatis. J. Bacteriol. 178, 2861-2866   DOI   PUBMED
11 Yun, E.J. and Y.N. Lee. 2000. Production of two different catalaseperoxidase by Deinococcus radiophilus. FEMS Microbiol. Lett. 184, 155-159   DOI
12 Anderson, M.B. and C.D. Anderson. 1995. Purification and characterization of Azotobacter vinelandii glucose-6-phosphate dehydrogenase: dual coenzyme specificity. Arch. Biochem. Biophys. 321, 95-100
13 Gersten, D.M. 1996. Gel electrophoresis: Proteins, essential techniques, D. Rickwood (ed), Wiley and Sons, West Sussex, UK
14 Sundaram, S., H. Karakaya, D.J. Scanlan, and N.H. Mann. 1998. Multiple oligomeric forms of glucose-6-phosphate dehydrogenase in Cyanobacteria and the role of OpcA in the assembly process. Microbiology 144, 1549-1556   DOI   ScienceOn
15 Demple. B. 1996. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon-a review. Gene 179, 53-57   DOI   ScienceOn
16 Gleason, F.K. 1996. Glucose-6-phosphate dehydrogenase from the Cyanobacterium, Anabaena sp. PCC 7120: purification and kinetics redox modulation. Arch. Biochem. Biophys. 334, 277-283   DOI   ScienceOn
17 Opheim, D. and R.W. Bernlohr. 1973. Purification and regulation of glucose-6-phosphate dehydrogenase from Bacillus licheniformis. J. Bacteriol. 116, 1150-1159   PUBMED
18 Seo, H.J. and Y.N. Lee. 2006. Occurrence of thioredoxin reductase in Deinococcus species, the UV resistant bacteria. J. Microbiol. 44, 461-465   과학기술학회마을
19 Lee, I.J. and Y.N. Lee. 1995. Purification and characterization of catalase-3 of Deinococcus radiophilus ATCC 27603. J. Microbiol. 33, 239-243
20 Bollag, D.M. and S.J. Edelstein. 1996. Protein method. p. 1-230, Wiley-Liss, Inc. New York, USA
21 Ursini, M.V., A. Parrella, G. Rosa, S. Salzano, and G. Martini. 1997. Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress. J. Biochem. 323, 801-806   DOI
22 Ma, J., P.W. Hager, M.L. Howell, P.V. Phibbs, and D.J. Hassett. 1998. Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucse-6-phosphate dehydrogense, an enzyme important in resistance to methyl viologen (paraquat). J. Bacteriol. 180, 1741-1749   PUBMED
23 Yun, Y.S. and Y.N. Lee. 2001. Superoxide dismutase profiles in the mesophilic Deinococcus species. J. Microbiol. 39, 232-235
24 Miki, T., Y. Tsujimoto, S. Miyabe, K. Sugiyama, S. Izawa, Y. Inoue, and A. Kimura. 1996. Oxidative stress response in yeast: purification and some properties of oxidative stress-inducible glucose-6-phosphate dehydrogenase from Hansenula mrakii. Biosci. Biotechnol. Biochem. 60, 966-970   DOI
25 Rainey, F.A., M.F. Nobre, P. Schumann, E. Stackebrandt, and M.S. da Costa. 1997. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47, 510-514   DOI   PUBMED   ScienceOn
26 Greenberg, J.T., P. Monach, J.H. Chou, P.D. Josephy, and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide generating agents in Escherichia coli. Proc. Natl. Acad. Sci. 87, 6181-6185
27 Honjoh, K., A. Mimura, E. Kuroiwa, T. Hagisako, K. Suga, H. Shimizu, R.S. Dubey, T. Miyamoto, S. Hatano, and M. Iio. 2003. Purification and characterization of two isoforms of glucose- 6-phosphate dehydrogenase (G6PDH) from Chlorella vulgaris C-27. Biosci. Biotechnol. Biochem. 67, 1888-1896   DOI   ScienceOn
28 Lundberg, B.E., R.E. Wolf, Jr., M.C. Dinauer, Y. Xu, and F.C. Fang. 1999. Glucose-6-phosphate dehydrogenase is required for Salmonella typhymurium virulence and resistance to reactive oxygens and nitrogen intermediates. Infec. Immun. 765, 436-438
29 Yun, Y.S. and Y.N. Lee. 2004. Purification and some properties of superoxide dismutase from Deinococcus radiophilus, the UV resistant bacterium. Extremophiles 8, 237-242   DOI
30 Heise, N. and F.R. Opperdoes. 1999. Purification, localization, and charaterization of glucose-6-phosphate dehydrogenase of Trypanosoma brucei. J. Mol. Biochem. Parasitol. 99, 21-32   DOI   ScienceOn
31 Ibraheem, O., I.O. Adewale, and A. Afolaya. 2005. Purification and properties of glucose-6-phosphate dehydrogenase from Aspergillus aculeatus. Biochem. Mol. Biol. 38, 584-590   DOI   PUBMED
32 Wright, D.P., H.C. Huppe, and D.H. Turpin. 1997. In vivo and in vitro studies of glucose-6-phosphate dehydrogenase from barley root plastids in relation to reductant supply for $NO_2^-$ assimilation. Plant Physiol. 114, 1413-1419   DOI   PUBMED
33 Levy, H.R. 1979. Glucose-6-phosphate dehydrogenase, p. 97. In A. Meister (Ed.), Advan. Enzymol. Vol. 48, John Wiley and Sons, New York, USA
34 Lessie, T.G. and F.C. Neidhardt. 1967. Adenosine triphosphatelinked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase. J. Bacteriol. 93, 1337-1345   PUBMED
35 Moritz, B., K. Striegel, A. Graaf, and H. Sahm. 2000. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenase from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur. J. Biochem. 267, 3442-3452   DOI   ScienceOn
36 Battista, J.R., A.M. Earl, and M.J. Park. 1999. Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends in Microbiol. 7, 362-365   DOI   ScienceOn
37 Murray, R.G.E. 1986. Family II, Deinococcaceae, p. 1035-1043. In R.E. Buchanan, N.E. Gibbons (eds), Bergey's Manual of Systematic Bacteriology, Vol. 2, Williams & Wilkins Co., Baltimore, Maryland, USA
38 Cacciapuoti, A.F. and T.G. Lessie. 1977. Characterization of the fatty acid-sensitive glucose-6-phosphate dehydrogenase from Pseudomonas cepacia. J. Bacteriol. 132, 555-563   PUBMED
39 Hansen, T., B. Schlichting, and P. Scho˝nheit. 2002. Glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: expression of the g6pd gene and characterization of an extremely thermophilic enzyme. FEMS Microbiol. Lett. 216, 249-253   DOI
40 Anderson, M.B., D.J. Wise, and C.D. Anderson. 1997. Azotobacter vinelandii glucose-6-phosphate dehydrogenase properties of NAD- and NADP-linked reactions. Biochem. Biophy. Acta 1340, 268-276   DOI   ScienceOn
41 Nordberg, J. and S.J. Arner. 2001. Reactive oxygen species, antioxidant and the mammalian thioredoxin system. Free Radical Biol. Med. 31, 1287-1312   DOI   ScienceOn
42 Cacciapuoti, A.F. and S.A. Morse. 1980. Glucose-6-phosphate dehydrogenase from Neisseria gonorrhoeae: partial characterization of the enzyme and inhibition by long-chain fatty acid acrylcoenzyme A derivatives. Can. J. Microbiol. 26, 863-873   DOI   PUBMED   ScienceOn
43 Izawa, S., K. Maeda, T. Miki, J. Mano, Y. Inoue, and A. Kimura. 1998. Importance of glucose-6-phoshate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem. J. 330, 811-817   DOI   PUBMED
44 Lessie, T.G. and J.C. Vander Wyk. 1972. Multiple form of Pseudomonas multivorans glucose-6-phosphate and 6-phosphogluconate dehydrogenase: difference in size, pyridine nucleotide specificity, and susceptibility to inhibition by adenosine 5'-triphosphate. J. Bacteriol. 110, 1107-1117   PUBMED
45 Benziman, M. and A. Mazover. 1973. Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphatespecific glucose-6-phosphate dehydrogenase of Acetobacter xylinum and their role in the regulation of the pentose cycle. J. Biol. Chem. 248, 1603-1608   PUBMED