• Title/Summary/Keyword: inducible nitric oxygenase

Search Result 89, Processing Time 0.028 seconds

The Stem Bark of Kalopanax pictus Exhibits Anti-inflammatory Effect through Heme Oxygenase-1 Induction and NF-${\kappa}B$ Suppression

  • Bang, Soo-Young;Park, Ga-Young;Park, Sun-Young;Kim, Ji-Hee;Lee, Yun-Kyoung;Lee, Sang-Joon;Kim, Young-Hee
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.212-218
    • /
    • 2010
  • Backgroud: The stem bark of Kalopanax pictus (KP) has been used in traditional medicine to treat rheumatoidal arthritis, neurotic pain and diabetes mellitus in China and Korea. In this study, the mechanism responsible for anti-inflammatory effects of KP was investigated. Methods: We examined the effects of KP on NO production, nitric oxide synthase (iNOS) and HO-1 expression, NF-${\kappa}B$, Nrf2 and MAPK activation in mouse peritoneal macrophages. Results: The aqueous extract of KP inhibited LPS-induced NO secretion as well as inducible iNOS expression, without affecting cell viability. KP suppressed LPS-induced NF-${\kappa}B$ activation, phosphorylation and degradation of $I{\kappa}B-{\alpha}$, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, KP induced HO-1 expression and Nrf2 nuclear translocation. Conclusion: These results suggest that KP has the inhibitory effects on LPS-induced NO production in macrophages through NF-${\kappa}B$ suppression and HO-1 induction.

Pharmacology of enantiomers of higenamine and related tetrahydroisoquinolines

  • Park, Min-Kyu;Huh, Ja-Myung;Lee, Young-Soo;Kang, Young-Jin;Seo, Han-Geuk;Lee, Jae-Heun;Park, Hye-Sook-Yun-;Lee, Duck-Hyung;Chang, Ki-Churl
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.04a
    • /
    • pp.3-10
    • /
    • 2004
  • Oxidative stress is a constant threat to all living organisms and an immense repertoire of cellular defense systems is being employed by most pro- and eukaryotic systems to eliminate or to attenuate oxidative stress. Ischemia and reperfusion is characterized by both a significant oxidative stress and characteristic changes in the antioxidant defense. Heme oxigenase-l (HO-l) is up-regulated by various stimuli including oxidative stress so that it is thought to participate in general cellular defense mechanisms against ischemic injury in mammalian cells. Higenamine, an active ingredient of Aconite tuber, has been shown to have antioxidant activity along with inhibitory action of inducible nitric oxide synthase (iNOS) expression in various cells. In the present study, we investigated whether higenamine and related analogs protect cells from oxidative cellular injuries by modulating antioxidant enzymes, such as HO-l, MnSOD etc. R-form of YS-51 was the most potent inducer of HO-l in bovine endothelial cells, which inhibited apoptotic cell death by H$_2$O$_2$. HO-1 induction by YS 51 was mediated by PI3 kinase activation in which PKA- as well as PKG pathway is considered as important regulators. YS-51 also induced Mn-SOD mRNA expression by activating c-jun N-terminal kinase in endothelial cells and Hela cells. In ROS 17/2.1 cells, higenamine and enetiomers of related compounds inhibited iNOS expression by cytokine mixtures. Taken together, higenamine and related compounds can be developed as possible protective agents from oxidative cell injury or death.

  • PDF

Pulegone Exhibits Anti-inflammatory Activities through the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-stimulated RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Abdul, Qudeer Ahmed;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • Pulegone is a naturally occurring organic compound obtained from essential oils from a variety of plants. The aim of this study was to investigate the anti-inflammatory effects through the inhibitory mechanism of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results revealed that pulegone significantly inhibited NO production as well as iNOS and COX-2 expressions. Meanwhile, western blot analysis showed that pulegone down-regulated LPS-induced $NF-{\kappa}B$ and MAPKs activation in RAW 264.7 cells. Furthermore, the selected compound suppressed LPS-induced intracellular ROS production in RAW 264.7 cells, while the expression of stress response gene, HO-1, and its transcriptional activator, Nrf-2 was upregulated upon pulegone treatment. Taking together, these findings provided that pulegone inhibited the LPS-induced expression of inflammatory mediators via the down-regulation iNOS, COX-2, $NF-{\kappa}B$, and MAPKs signaling pathways as well as up-regulation of Nrf-2/HO-1 indicating that pulegone has a potential therapeutic and preventive application in various inflammatory diseases.

Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Estragole is a naturally occurring phenylpropanoid obtained from essential oils found in a broad diversity of plants. Although the phenylpropanoids show many biological activities, clear regulation of the inflammatory signaling pathways has not yet been determined. Here, we scrutinized the anti-inflammatory effect of estragole. The anti-inflammatory effect of estragole was determined through the inhibitory mechanisms of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), and mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Estragole significantly inhibited NO production, iNOS and COX-2 expression as well as LPS-induced $NF-{\kappa}B$ and MAPK activation. Furthermore, estragole suppressed LPS-induced intracellular ROS production but up-regulated the stress response gene HO-1 via the activation of transcription factor Nrf-2. These findings demonstrate that estragole inhibits the LPS-induced expression of inflammatory mediators via the down-regulation of iNOS, COX-2, $NF-{\kappa}B$, and MAPK pathways, as well as the up-regulation of the Nrf-2/HO-1 pathway, indicating that this phenylpropanoid has potential therapeutic and preventive applications in various inflammatory diseases.

Differential Regulation of Cytochrome P450 Isozyme mRNAs and Proteins by Femur Fracture Trauma

  • Lee, Woo-Young;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1079-1086
    • /
    • 2003
  • The aim of this study was to investigate the effect of trauma on cytochrome P450 (CYP) gene expression and to determine the role of Kupffer cells in trauma-induced alteration of CYP isozymes. Rats underwent closed femur fracture (FFx) with associated soft-tissue injury under anesthesia. To deplete Kupffer cells in vivo, gadolinium chloride ($GdCl_3$) was intravenously injected at 7.5 mg/kg body wt., 1 and 2 days prior to FFx surgery. At 72 h of FFx, liver tissues were isolated to determine the mRNA and protein expression of CYP isozymes and NADPH-P450 reductase by reverse transcription-polymerase chain reaction and Western immunoblotting, respectively. In addition, the mRNA levels of tumor necrosis factor alpha (TNF-$\alpha$), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1) were evaluated. FFx increased the mRNA level of CYP1A1; an increase that was not prevented by $GdCl_3$. There were no significant differences in the mRNA expression of CYP1A2, 2B1 and 2E1 among any of the experimental groups. The protein levels of CYP2B1 and 2E1 were significantly decreased by FFx; a decrease that was not prevented by $GdCl_3$ treatment. The gene expression of NADPH-P450 reductase was unchanged by FFx. FFx significantly increased the expression of TNF-$\alpha$ mRNA; an increase that was attenuated by $GdCl_3$. The mRNA expression of HO-1 was increased by FFx, but not by $GdCl_3$ . Our findings suggest that FFx differentially regulates the expression of CYP isozyme through Kupffer cell-independent mechanisms.

The Protective Effects of Acupuncture on Oxidative Stress Caused by Cadmium in the Kidney (카드뮴으로 유발된 산화적 스트레스에 대한 침 자극의 신장 보호 효과)

  • Shin, Hwa Young;Lee, Hyun Jong;Kim, Jae Soo
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Objectives : This study was performed to inquire into the protective effects of acupuncture on oxidative stress caused by cadmium accumulation in the kidney. Methods : Sprague-Dawley male($150{\pm}30g$) rats were stabilized for 1 week and divided into 5 groups: normal, control, $LR_3$ acupuncture, $BL_{23}$ acupuncture and sham acupuncture. For three days experimental groups received oral doses of cadmium 2 mg/kg twice a day. Acupuncture was applied bilaterally at each point 10 times for two weeks. The depth of stimulation was 1 mm at right angles and torsion of acupuncture was produced 2 times per second for 1 minute. The kidneys were extracted and weighed after two weeks, and renal function was confirmed through blood urea nitrogen(BUN). We measured reactive oxygen species of the serum and kidney, and compared expression levels of superoxide dismutase(SOD), catalase, glutathione peroxidase(Gpx), nuclear factor erythroid derived 2-related factor 2(Nrf-2), heme oxygenase-1(HO-1), nuclear factor-${\kappa}B$(NF-${\kappa}B)$, cyclooxygenase-2(COX-2), inducible nitric oxide synthase (iNOS), Bax and Cytochrome c. Results : The $LR_3$ acupuncture group and $BL_{23}$ acupuncture group experienced significantly increased kidney weight, and decreased BUN compared to control group. In terms of oxidative stress, the $LR_3$ acupuncture group and $BL_{23}$ acupuncture group experienced significantly reduced reactive oxygen species compared to the control group. Conclusions : The $LR_3$ acupuncture group and $BL_{23}$ acupuncture group experienced showed the effects of antioxidant, anti-inflammatory and apoptosis protection. The $BL_{23}$ acupuncture group was more effective than $LR_3$ acupuncture group.

Suppression of Protein Kinase C and Nuclear Oncogene Expression as Possible Action Mechanisms of Cancer Chemoprevention by Curcumin

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.683-692
    • /
    • 2004
  • Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C(PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and LĸB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)KB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction path-ways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins playa pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.

Anti-neuroinflammatory Effects of 12-Dehydrogingerdione in LPS-Activated Microglia through Inhibiting Akt/IKK/NF-κB Pathway and Activating Nrf-2/HO-1 Pathway

  • Zhao, Dong;Gu, Ming-Yao;Xu, Jiu Liang;Zhang, Li Jun;Ryu, Shi Yong;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2019
  • Ginger, one of worldwide consumed dietary spice, is not only famous as food supplements, but also believed to exert a variety of remarkable pharmacological activity as herbal remedies. In this study, a ginger constituent, 12-dehydrogingerdione (DHGD) was proven that has comparable anti-inflammatory activity with positive control 6-shogaol in inhibiting LPS-induced interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, prostaglandin (PG) $E_2$, nitric oxide (NO), inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, without interfering with COX-1 in cultured microglial cells. Subsequent mechanistic studies indicate that 12-DHGD may inhibit neuro-inflammation through suppressing the LPS-activated $Akt/IKK/NF-{\kappa}B$ pathway. Furthermore, 12-DHGD markedly promoted the activation of NF-E2-related factor (Nrf)-2 and heme oxygenase (HO)-1, and we demonstrated that the involvement of HO-1 on the production of pro-inflammatory mediators such as NO and $TNF-{\alpha}$ by using a HO-1 inhibitor, Zinc protoporphyrin (Znpp). These results indicate that 12-DHGD may protect against neuro-inflammation by inhibiting $Akt/IKK/I{\kappa}B/NF-{\kappa}B$ pathway and promoting Nrf-2/HO-1 pathway.

Effects of 『Geum-Gwe-Yo-Ryak(金匱要略)』 Prescription for Chest Pain Including Kwaruhaebaekbanha-tang and Kwaruhaebaekpaekju-tang on Macrophage Polarization (금궤요략(金匱要略) 심통 처방 중 과루해백반하탕과 과루해백백주탕이 대식세포 극성화에 미치는 영향)

  • Son, Chang-Hyeon;Lee, Sang-Min;Yu, Ga-Ram;Lee, Seung-Jun;Lim, Dong-Woo;Kim, Hyuck;Park, Won-Hwan;Kim, Jai-Eun
    • The Journal of Korean Medicine
    • /
    • v.40 no.2
    • /
    • pp.51-62
    • /
    • 2019
  • Objectives: This study was designed to evaluate the macrophages polarization of traditional Korean medicine on cardiac pain about Geum-Gwe-Yo-Ryak's two prescriptions including Kwaruhaebaekbanha-tang (KHB) and Kwaruhaebaekpaekju-tang (KHP). Materials and methods: Flow cytometry analysis was used to measure the changes in the ratio of M1 type and M2 type macrophages. Protein expression of nuclear factor-like 2 (Nrf2), heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were measured by Western Blot, and ABCA1 and SR-B1 were detected by real time PCR (RT-PCR). Intracellular lipid accumulation was measured by Oil Red O staining (ORO staining). Results: KHB and KHP increase anti-oxidative activity related protein levels including Nrf2 and HO-1. Furthermore, KHB and KHP inhibit lipid accumulation on intracellular levels through induction of ATP binding receptor cassette subfamily A member 1 (ABCA1) and scavenging receptor class B member 1 (SR-B1), respectively. Finally, KHB and KHP also blocked pro-inflammatory mediators including tumor necrosis factor-alpha ($TNF{\alpha}$) and interleukin-6 (IL-6), iNOS and COX-2 expression. Conclusion: This study suggests that KHB and KHP potently regulate the M1/M2 macrophage polarization.

Effects of Oral Administered Hot Water Extracts of Korean Black Ginseng on Wound Healing in Mice (피부(皮膚) 창상(創傷) 동물모델에서 흑삼(黑蔘) 열수 추출물 경구 투여의 효과)

  • Kim, Tae-Ryeong;Kim, Young-Jun;Woo, Chang-Hoon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.32 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Objectives This study aims to evaluate the wound healing effects of oral administered hot water extracts of Korean black ginseng (KBG). Methods 40 C57BL/6 mice were divided into five groups; normal, control, vitamin E 200 mg/kg, KBG 100 mg/kg, KBG 200 mg/kg, each n=8. Skin wounds were made in the back of all mice except normal group using biopsy punches. Wounds were observed on days 7 and 14 after injury. The anti-oxidant and inflammatory protein levels were evaluated using western blotting. Skin tissue was analyzed by hematoxylin & eosin and Masson's trichrome staining method. Results KBG significantly accelerated reducing wound area. KBG significantly decreased myeloperoxidase activity. KBG significantly decreased oxidative stress factors such as NADPH oxidase-4 and p22phox and increased antioxidant enzymes including nuclear factor erythroid 2-related factor2, kelch-like ECH-associated protein-1, heme oxygenase-1, superoxide dismutase, catalase and glutathione peroxidase-1/2. Moreover, KBG significantly decreased inflammation factors including nuclear factor-κB, phosphorylated inhibitor of κBα, cyclooxygenase-2, inducible nitric oxide synthase, tumor necrosis factor-α and interleukin (IL)-6 and increased anti-inflammation cytokine such as IL-4 and IL-10. In addition, KBG significantly increased tight junction proteins including claudin-1, claudin-3, claudin-4. In histopathologic, KBG made the epithelium thin and uniform, and accelerated the remodeling of collagen. Conclusions The results suggest that KBG has healing effects on skin wound in mice by anti-inflammatory and antioxidant activity.