DOI QR코드

DOI QR Code

Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells

  • Roy, Anupom (Department of Food and Life Science, Pukyong National University) ;
  • Park, Hee-Juhn (Department of Pharmaceutical Engineering, Sangji University) ;
  • Jung, Hyun Ah (Department of Food Science and Human Nutrition, Chonbuk National University) ;
  • Choi, Jae Sue (Department of Food and Life Science, Pukyong National University)
  • Received : 2017.08.04
  • Accepted : 2017.10.11
  • Published : 2018.03.30

Abstract

Estragole is a naturally occurring phenylpropanoid obtained from essential oils found in a broad diversity of plants. Although the phenylpropanoids show many biological activities, clear regulation of the inflammatory signaling pathways has not yet been determined. Here, we scrutinized the anti-inflammatory effect of estragole. The anti-inflammatory effect of estragole was determined through the inhibitory mechanisms of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), and mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Estragole significantly inhibited NO production, iNOS and COX-2 expression as well as LPS-induced $NF-{\kappa}B$ and MAPK activation. Furthermore, estragole suppressed LPS-induced intracellular ROS production but up-regulated the stress response gene HO-1 via the activation of transcription factor Nrf-2. These findings demonstrate that estragole inhibits the LPS-induced expression of inflammatory mediators via the down-regulation of iNOS, COX-2, $NF-{\kappa}B$, and MAPK pathways, as well as the up-regulation of the Nrf-2/HO-1 pathway, indicating that this phenylpropanoid has potential therapeutic and preventive applications in various inflammatory diseases.

Keywords

References

  1. Joung, E. -J.; Lee, B.; Gwon, W. -G.; Shin, T.; Jung, B. -M.; Yoon, N. -Y.; Choi, J. S.; Oh, C. -W.; Kim, H. -R. Int. Immunopharmacol. 2005, 29, 693-700.
  2. Laroux, F. S.; Pavlick, K. P.; Hines, I. N.; Kawachi, S.; Harada, H.; Bharwani, S.; Hoffman, J. M.; Grisham, M. B. Acta Physiol. Scand. 2001, 173, 113-118. https://doi.org/10.1046/j.1365-201X.2001.00891.x
  3. Giuliani, C.; Napolitano, G.; Bucci, I.; Montani, V.; Monaco, F. Clin. Ter. 2001, 152, 249-253.
  4. May, M. J.; Ghosh, S. Immunol. Today 1998, 19, 80-88. https://doi.org/10.1016/S0167-5699(97)01197-3
  5. Tak, P. P.; Firestein, G. S. J. Clin. Invest. 2001, 107, 7-11. https://doi.org/10.1172/JCI11830
  6. Cargnello, M.; Roux, P. P. Microbiol. Mol. Biol. Rev. 2011, 75, 50-83. https://doi.org/10.1128/MMBR.00031-10
  7. Chen, H. -G.; Xie, K. -L.; Han, H. -Z.; Wang, W. -N.; Liu, D. -Q.; Wang, G. -L.; Yu, Y. -H. Int. J. Surg. 2013, 11, 1060-1066. https://doi.org/10.1016/j.ijsu.2013.10.007
  8. Taha, R.; Blaise, G. Funct. Food Health Dis. 2014, 4, 510-523.
  9. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Food Chem. Toxicol. 2008, 46, 446-475. https://doi.org/10.1016/j.fct.2007.09.106
  10. Choi, J. S.; Song, B. M.; Park, H. J. Kor. J. Pharmacogn. 2016, 47, 192-196.
  11. Donati, M.; Mondin, A.; Chen, Z.; Miranda, F. M.; do Nascimento, B. B. Jr.; Schirato, G.; Pastore, P.; Froldi, G. Nat. Prod. Res. 2015, 29, 939-946. https://doi.org/10.1080/14786419.2014.964709
  12. Friedman, M.; Henika, P. R.; Mandrell, R. E. J. Food Prot. 2002, 65, 1545-1560. https://doi.org/10.4315/0362-028X-65.10.1545
  13. Cosentino, R. M.; Norte, M. C.; Lazarini, C. A. Phytother. Res. 2004, 18, 921-924. https://doi.org/10.1002/ptr.1583
  14. Albuquerque, A. A.; Sorenson, A. L.; Leal-Cardoso, J. H. J. Ethnopharmacol. 1995, 49, 41-49. https://doi.org/10.1016/0378-8741(95)01301-6
  15. Ponte, E. L.; Sousa, P. L.; Rocha, M. V.; Soares, P. M.; Coelho-de-Souza, A. N.; Leal-Cardoso, J. H.; Assreuy, A. M. Pharmacol. Rep. 2012, 64, 984-990. https://doi.org/10.1016/S1734-1140(12)70895-2
  16. Rodrigues, L. B.; Oliveira Brito Pereira Bezerra Martins, A.; Cesario, F. R.; Ferreira e Castro, F.; de Albuquerque, T. R.; Martins Fernandes, M. N.; Fernandes da Silva, B. A.; Quintans Junior, L. J.; da Costa, J. G.; Melo Coutinho, H. D.; Barbosa, R.; Alencar de Menezes, I. R. Chem. Biol. Interact. 2016, 257, 14-25. https://doi.org/10.1016/j.cbi.2016.07.026
  17. Keiser, K.; Johnson, C. C.; Tipton, D. A. J. Endod. 2000, 26, 288-291. https://doi.org/10.1097/00004770-200005000-00010
  18. Meda, L.; Cassatella, M. A.; Szendrei, G. I.; Otvos, L. Jr.; Baron, P.; Villalba, M.; Ferrari, D.; Rossi, F. Nature 1995, 374, 647-650. https://doi.org/10.1038/374647a0
  19. Dandona, P.; Chaudhuri, A.; Dhindsa, S. Diabetes Care 2010, 33, 1686-1687. https://doi.org/10.2337/dc10-0503
  20. Marks-Konczalik, J.; Chu, S. C.; Moss, J. J. Biol. Chem. 1998, 273, 22201-22208. https://doi.org/10.1074/jbc.273.35.22201
  21. Islam, M. N.; Choi, R. J.; Jin, S. E.; Kim, Y. S.; Ahn, B. R.; Zhao, D.; Jung, H. A.; Choi, J. S. J. Ethnopharmacol. 2012, 144, 175-181. https://doi.org/10.1016/j.jep.2012.08.048
  22. Chen, J. -J.; Huang, W. -C.; Chen, C. -C. Mol. Biol. Cell. 2005, 16, 5579-5591. https://doi.org/10.1091/mbc.e05-08-0778
  23. Rajapakse, N.; Kim, M. M.; Mendis, E.; Kim, S. K. Immunology 2008, 123, 348-357. https://doi.org/10.1111/j.1365-2567.2007.02683.x
  24. Kaminska, B. Biochem. Biophys. Acta 2005, 1754, 253-262.
  25. Xia, Z.; Dickens, M.; Raingeaud, J.; Davis, R. J.; Greenberg, M. E. Science 1995, 24, 1326-1331.
  26. Hancock, J. T.; Desikan, R.; Neill, S. J. Biochem. Soc. Trans. 2001, 29, 345-350. https://doi.org/10.1042/bst0290345
  27. Choi, S. Y.; Hwang, J. H.; Ko, H. C.; Park, J. G.; Kim, S. J. J. Ethnopharmacol. 2007, 113, 149-155.
  28. Siomek, A. Acta Biochem. Pol. 2012, 59, 323-331.
  29. Ryan, K. A.; Simth, M. F. Jr.; Sanders, M. K.; Ernst, P. B. Infect. Immun. 2004, 72, 2123-2130. https://doi.org/10.1128/IAI.72.4.2123-2130.2004
  30. Kim, J. -H.; Choo, Y. -Y.; Tae, N.; Min, B. -S.; Lee, J. -H. Int. Immunopharmacol. 2014, 22, 420-426. https://doi.org/10.1016/j.intimp.2014.07.025
  31. Lee, I. -S.; Lim, J.; Gal, J.; Kang, J. -C.; Kim, H. -J.; Kang, B. -Y.; Choi, H. -J. Neurochem. Int. 2011, 58, 153-160. https://doi.org/10.1016/j.neuint.2010.11.008
  32. Paine, A.; Eiz-Vesper, B.; Blasczyk, R.; Immenschuh, S. Biochem. Pharmacol. 2010, 80, 1895-1903. https://doi.org/10.1016/j.bcp.2010.07.014
  33. Lee, M. -Y.; Lee, J. -A.; Seo, C.-S.; Ha, H.; Lee, H.; Son, J. -K.; Shin, H. -K. Food Chem. Toxicol. 2011, 49, 1047-1055. https://doi.org/10.1016/j.fct.2011.01.010
  34. Tsoyi, K.; Lee, T. Y.; Lee, Y. S.; Kim, H. J.; Seo, H. G.; Lee, J. H.; Chang, K. C. Mol. Pharmacol. 2009, 76, 173-182. https://doi.org/10.1124/mol.109.055137

Cited by

  1. Beneficial Effects of Deoxyshikonin on Delayed Wound Healing in Diabetic Mice vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113660
  2. A Hydroxypropyl Methylcellulose-Based Solid Dispersion of Curcumin with Enhanced Bioavailability and its Hepatoprotective Activity vol.9, pp.7, 2018, https://doi.org/10.3390/biom9070281
  3. Identification and Isolation of Active Compounds from Astragalus membranaceus that Improve Insulin Secretion by Regulating Pancreatic β-Cell Metabolism vol.9, pp.10, 2018, https://doi.org/10.3390/biom9100618
  4. (3β,16α)-3,16-Dihydroxypregn-5-en-20-one from the Twigs of Euonymus alatus (Thunb.) Sieb. Exerts Anti-Inflammatory Effects in LPS-Stimulated RAW-264.7 Macrophages vol.24, pp.21, 2018, https://doi.org/10.3390/molecules24213848
  5. Analysis and Identification of Active Compounds from Salviae miltiorrhizae Radix Toxic to HCT-116 Human Colon Cancer Cells vol.10, pp.4, 2018, https://doi.org/10.3390/app10041304
  6. Megastigmane Derivatives from the Cladodes of Opuntia humifusa and Their Nitric Oxide Inhibitory Activities in Macrophages vol.83, pp.3, 2020, https://doi.org/10.1021/acs.jnatprod.9b01120
  7. Protective effect of fennel, and its major component trans-anethole against social isolation induced behavioral deficits in rats vol.107, pp.1, 2018, https://doi.org/10.1556/2060.2020.00012
  8. Protective effect of fennel, and its major component trans-anethole against social isolation induced behavioral deficits in rats vol.107, pp.1, 2018, https://doi.org/10.1556/2060.2020.00012
  9. Coreolanceolins A–E, New Flavanones from the Flowers of Coreopsis lanceolate, and Their Antioxidant and Anti-Inflammatory Effects vol.9, pp.6, 2020, https://doi.org/10.3390/antiox9060539
  10. Antioxidant and Anti-Inflammatory Activities of Safflower ( Carthamus tinctorius L.) Honey Extract vol.9, pp.8, 2018, https://doi.org/10.3390/foods9081039
  11. Anti-Inflammatory and Antimicrobial Volatile Oils: Fennel and Cumin Inhibit Neutrophilic Inflammation via Regulating Calcium and MAPKs vol.12, pp.None, 2018, https://doi.org/10.3389/fphar.2021.674095