Browse > Article
http://dx.doi.org/10.18325/jkmr.2022.32.1.1

Effects of Oral Administered Hot Water Extracts of Korean Black Ginseng on Wound Healing in Mice  

Kim, Tae-Ryeong (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Daegu Haany University)
Kim, Young-Jun (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Daegu Haany University)
Woo, Chang-Hoon (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Daegu Haany University)
Publication Information
Journal of Korean Medicine Rehabilitation / v.32, no.1, 2022 , pp. 1-19 More about this Journal
Abstract
Objectives This study aims to evaluate the wound healing effects of oral administered hot water extracts of Korean black ginseng (KBG). Methods 40 C57BL/6 mice were divided into five groups; normal, control, vitamin E 200 mg/kg, KBG 100 mg/kg, KBG 200 mg/kg, each n=8. Skin wounds were made in the back of all mice except normal group using biopsy punches. Wounds were observed on days 7 and 14 after injury. The anti-oxidant and inflammatory protein levels were evaluated using western blotting. Skin tissue was analyzed by hematoxylin & eosin and Masson's trichrome staining method. Results KBG significantly accelerated reducing wound area. KBG significantly decreased myeloperoxidase activity. KBG significantly decreased oxidative stress factors such as NADPH oxidase-4 and p22phox and increased antioxidant enzymes including nuclear factor erythroid 2-related factor2, kelch-like ECH-associated protein-1, heme oxygenase-1, superoxide dismutase, catalase and glutathione peroxidase-1/2. Moreover, KBG significantly decreased inflammation factors including nuclear factor-κB, phosphorylated inhibitor of κBα, cyclooxygenase-2, inducible nitric oxide synthase, tumor necrosis factor-α and interleukin (IL)-6 and increased anti-inflammation cytokine such as IL-4 and IL-10. In addition, KBG significantly increased tight junction proteins including claudin-1, claudin-3, claudin-4. In histopathologic, KBG made the epithelium thin and uniform, and accelerated the remodeling of collagen. Conclusions The results suggest that KBG has healing effects on skin wound in mice by anti-inflammatory and antioxidant activity.
Keywords
Panax; Wound healing; Wounds and injuries; Anti-inflammatory agents; Antioxidants;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hampton MB, Kettle AJ, Winterbourn CC. Inside th neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007-17.   DOI
2 Utami ND, Nordin A, Katas H, Idrus RBH, Fauzi MB. Molecular action of hydroxytyrosol in wound healing: an in vitro evidence-based review. Biomolecules. 2020;10(10):1397.   DOI
3 Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunityassociated pathologies. Cellular & Molecular Immunology. 2015;12(1):5-23.   DOI
4 Hiebert P, Werner S. Regulation of wound healing by the NRF2 transcription factor-more than cytoprotection. International Journal of Molecular Sciences. 2019;20(16):3856.   DOI
5 The Korean Medicine Society for Herbology. Herbology. Seoul:Yeongrim. 2007:572-4.
6 Liu M, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2017;2:e17023.
7 Rabbani PS, Soares MA, Hameedi SG, Kadle RL, Mubasher A, Kowzun M, Ceradini DJ. Dysregulation of Nrf2/Keap1 redox pathway in diabetes affects multipotency of stromal cells. Diabetes. 2019;68(1):141-55.   DOI
8 Keller U, Kumin A, Braun S, Werner S. Reactive oxygen species and their detoxification in healing skin wounds. Journal of Investigative Dermatology Symposium Proceedings. 2006;11(1):106-11.   DOI
9 Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology. 2007;127(3):514-25.   DOI
10 Levigne D, Modarressi A, Krause KH, Pittet-Cuenod B. NADPH oxidase 4 deficiency leads to impaired wound repair and reduced dityrosine-crosslinking, but does not affect myofibroblast formation. Free Radical Biology & Medicine. 2016;96:374-84.   DOI
11 Dzialo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. International Journal of Molecular Sciences. 2016;17(2):160.   DOI
12 Shah A, Amini-Nik S. The role of phytochemicals in the inflammatory phase of wound healing. International Journal of Molecular Sciences. 2017;18(5):1068.   DOI
13 Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. Journal of Biological Chemistry. 2008;283(16):10930-8.   DOI
14 Peshavariya HM, Chan EC, Liu GS, Jiang F, Dusting GJ. Transforming growth factor-β1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2014;18(6):1172-83.   DOI
15 Victor P, Sarada D, Ramkumar KM. Pharmacological activation of Nrf2 promotes wound healing. European Journal of Pharmacology. 2020;886:173395.   DOI
16 Landen NX, Li D, Stahle M. Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences. 2016;73(20):3861-85.   DOI
17 Roy S, Khanna S, Nallu K, Hunt T, Sen CK. Dermal wound healing is subject to redox control. Molecular Therapy. 2006;13(1):211-20.   DOI
18 Schafer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacological Research. 2008;58(2):165-71.   DOI
19 Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25(51):6680-4.   DOI
20 Hayden MS, Ghosh S. Signaling to NF-κB. Genes & Development. 2004;18(18):2195-224.   DOI
21 Chen C. Cox-2's new role in inflammation. Nature Chemical Biology. 2010;6(6):401-2.   DOI
22 Futagami A, Ishizaki M, Fukuda Y, Kawana S, Yamanaka N. Wound healing involves induction of cyclooxygenase-2 expression in rat skin. Laboratory Investigation. 2002;82(11):1503-13.   DOI
23 Masae R, Kazuyoshi K, Emi K, Hiromasa T, Keiko I, Yoshimichi I, Ryoko M, Masahiro T. Critical role of tumor necrosis factor-a in the early process of wound healing in skin. Journal of Dermatology & Dermatologic Surgery. 2017;21(1):14-9.   DOI
24 Abdalla HB, Napimoga MH, Lopes AH, Maganin AGM, Cunha TM, Dyke TEV, Napimoga JTCN. Activation of PPAR-γ induces macrophage polarization and reduces neutrophil migration mediated by heme oxygenase 1. International Immunopharmacology. 2020;84:106565.   DOI
25 Fridovich I. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry. 1995;64(1):97-112.   DOI
26 Kim SN, Kang SJ. Effects of black ginseng (9 times steaming ginseng) on hypoglycemic action and changes in the composition of ginsenosides on the steaming process. Korean Journal of Food Science and Technology. 2009;41(1):77-81.
27 Kim HJ, Lee JY, You BR, Kim HR, Choi JE, Nam KY, Moon BD, Kim MR. Antioxidant activities of ethanol extracts from black ginseng prepared by steaming-drying cycles. Journal of the Korean Society of Food Science and Nutrition. 2011;40(2):156-62.   DOI
28 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine. 1999;26:1231-7.   DOI
29 Blair ZJ, Andrew WS, Cecilia MP, Mark WF, Fiona MW. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8(5):101-19.   DOI
30 Shi HP, Most D, Efron DT, Tantry U, Fischel MH, Barbul A. The role of iNOS in wound healing. Surgery. 2001;130(2):225-9.   DOI
31 Delavary BM, Veer WM, Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753-62.   DOI
32 Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology. 2008;8(12):958-69.   DOI
33 King A, Balagi S, Le LD, Crombleholme TM, Keswani SG. Regenerative wound healing: The role of interleukin-10. Advances in Wound Care. 2014;3(4):315-23.   DOI
34 Moore KW, Malefyt RW, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology. 2001;19(1):683-765.   DOI
35 Gordon S. Alternative activation of macrophages. Nature Reviews Immunology. 2003;3(1):23-35.   DOI
36 Farkas AE, Capaldo CT, Nusrat A. Regulation of epithelial proliferation by tight junction proteins. Annals of the New York Academy of Sciences. 2012;1258(1):115-24.   DOI
37 Leonardo TR, Shi J, Chen D, Trivedi HM, Chen L. Differential expression and function of bicellular tight junctions in skin and oral wound healing. International Journal of Molecular Sciences. 2020;21(8):2966.   DOI
38 Nam KY, Lee NR, Moon BD, Song GY, Shin HS, Choi JE. Changes of ginsenosides and color from black ginsengs prepared by steaming-drying cycles. Korean Journal of Medicinal Crop Science. 2012;20(1):27-35.   DOI
39 Simpson CL, Patel DM, Green KJ. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nature Reviews of Molecular Cell Biology. 2011;12(9):565-80.   DOI
40 Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair and Regeneration. 2008;16(5):585-601.   DOI
41 Metwaly AM, Lianlian Z, Luqi H, Dequiang D. Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects. Molecules. 2019;24(10):1856.   DOI
42 Go YJ, Kim YE, Kim HN, Lee EH, Cho EB, Sultanov A, Kwon SI, Cho YJ. Inhibition effect against elastase, collagenase, hyaluronidase and anti-oxidant activity of thinning green ball apple. Journal of Applied Biological Chemistry. 2020;63(1):43-50.   DOI
43 Lister CE, Lancaster JE, Sutton KH, Walker JR. Developmental changes in the concentration and composition of flavonoids in skin of a red and a green apple cultivar. Journal of the Science of Food and Agriculture. 1994;64(2):155-61.   DOI
44 Witte MB, Barbul A. Role of nitric oxide in wound repair. The American Journal of Surgery. 2002;183(4):406-12.   DOI
45 Usui ML, Mansbridge JN, Carter WG, Fujita M, Olerud JE. Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds. Journal of Histochemistry & Cytochemistry. 2008;56(7):687-96.   DOI
46 Geoffrey CG, Werner S, Barrandon Y, Longaker TM. Wound repair and regeneration. Nature. 2008;453(7193):314-21.   DOI
47 Perkins ND, Gilmore TD. Good cop, bad cop: the different face of NF-κB. Cell Death and Differentiation. 2006;13(5):759-72.   DOI
48 Shi J, Barakat M, Chen D, Chen L. Bicellular tight junctions and wound healing. International Journal of Molecular Sciences. 2018;19(12):3862.   DOI
49 Volksdorf T, Heilmann J, Eming SA, Schawjinski K, Zorn-Kruppa M, Ueck C, Vidal-y-Sy S, Windhorst S, Jucker M, Moll I, Brandner JM. Tight junction proteins claudin-1 and occludin are important for cutaneous wound healing. The American Journal of Pathology. 2017;187(6):1301-12.   DOI
50 Andre-Levigne D, Modarressi A, Pepper MS, Pittet-Cuenod B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. International Journal of Molecular Sciences. 2017;18(10):2149.   DOI
51 Reinke JM, Sorg H. Wound repair and regeneration. European Surgical Research. 2012;49(1):35-43.   DOI
52 Stephan B, Olivera S, Michael GS, Harold B, Marjana CT. Growth factors and cytokines in wound healing. Wound Repair and Regeneration. 2008;16(5):585-601.   DOI
53 De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA. Tight junction defects in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology. 2010;127(3):773-86.   DOI
54 Li D, Wang A, Liu X, Meisgen F, Grunler J, Botusan IR, Narayanan S, Erikci E, Li X, Blomqvist L, Du L, Pivarcsi A, Sonkoly E, Chowdhury K, Catrina SB, Stahle M, Landen NX. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. The Journal of Clinical Investigation. 2015;125(8):3008-26.   DOI
55 Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Calzi SL, Lach R, Hock TD, Chen B, Hill-Kapturczak N, Siegal GP, Dulak J, Jozkowicz A, Grant MB, Agarwal A. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. Journal of Experimental Medicine. 2007;204(3):605-18.   DOI
56 Kim MY, Kwon OJ, Noh JS, Roh SS. Inhibitory activities of water extracts of black ginseng on HCL/ethanol-induced acute gastritis through anti-oxidant effect. Journal of the Korean Society of Food Science and Nutrition. 2016;45(9):1249-56.   DOI
57 Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sanchez-Perez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology. 2015;6:183-97.   DOI
58 Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MAR, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HHHW, Weissmann N. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circulation Research. 2007;101(3):258-67.   DOI
59 Blosis MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200.   DOI
60 Han ST, Whang WK, Kim IH, Yang BW, Cho SH, Ko SK. Analysis of ginsenosides of black ginseng. Archives of Pharmacal Research. 2005;49(6):490-4.
61 Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Medicinal Research Reviews. 2003;23(4):519-34.   DOI
62 Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology. 2011;48(4):412-22.   DOI
63 Loria V, Dato I, Graziani F, Biasucci LM. Myeloperoxidase: a new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators of Inflammation. 2008;2008:135625.   DOI