• 제목/요약/키워드: induced-current impedance tomography

검색결과 13건 처리시간 0.027초

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

Genetic Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon;Kang, Chang-Ik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권3호
    • /
    • pp.123-128
    • /
    • 2004
  • In electrical impedance tomography (EIT), the internal resistivity distribution of the unknown object is computed using the boundary voltage data induced by different current patterns using various reconstruction algorithms. This paper presents a new image reconstruction algorithm based on the genetic algorithm (GA) via a two-step approach for the solution of the EIT inverse problem, in particular for the reconstruction of "static" images. The computer simulation for the 32 channels synthetic data shows that the spatial resolution of reconstructed images in the proposed scheme is improved compared to that of the modified Newton-Raphson algorithm at the expense of an increased computational burden.rden.

전기 임피던스 단층촬영을 위한 지수적으로 가중된 최소자승법을 이용한 수정된 조정 Newton-Raphson 알고리즘 (Regularized Modified Newton-Raphson Algorithm for Electrical Impedance Tomography Based on the Exponentially Weighted Least Square Criterion)

  • 김경연;김봉석
    • 전기전자학회논문지
    • /
    • 제4권2호
    • /
    • pp.249-256
    • /
    • 2000
  • 전기 임피던스 단층촬영에서는, 각기 다른 주입 전류패턴에 의해 유기된 경계면의 전압 값을 이용하여 다양한 복원 알고리즘에 의해 물체의 내부 저항률(전도율) 분포를 추정한다. 본 논문에서는, 부가적인 사전 정보를 soft 제약조건으로 비용함수에 추가하고, 비용함수의 가중행렬을 지수적으로 가중된 최소자승법에 근거하여 선택하는 수정된 조정 Newton-Raphson(mNR) 법을 제안한다. 32채널에 대한 컴퓨터 시뮬레이션 결과, 제안된 방법은 기존의 조정 mNR 법에 비해 계산부담은 약간 증가하지만 복원성능이 개선됨을 보인다.

  • PDF

디지털 임피던스 영상 시스템의 설계 및 구현 (Design and Implementation of Digital Electrical Impedance Tomography System)

  • 오동인;백상민;이재상;우응제
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권4호
    • /
    • pp.269-275
    • /
    • 2004
  • 인체내부의 각 조직은 서로 다른 저항률(resistivity)분포를 가지며, 조직의 생리학적, 기능적 변화에 따라 임피던스가 변화한다. 본 논문에서는 주로 기능적 영상을 위한 임피던스 단층촬영 (EIT, electrical impedance tomography) 시스템의 설계와 구현 결과를 기술한다. EIT 시스템은 인체의 표면에 부착한 전극을 통해 전류를 주입하고 이로 인해 유기되는 전압을 측정하여, 내부 임피던스의 단층영상을 복원하는 기술이다. EIT 시스템의 개발에 있어서는 영상복원의 난해함과 아울러 측정시스템의 낮은 정확도가 기술적인 문제가 되고 있다. 본 논문은 기존 EIT 시스템의 문제점을 파악하고 디지털 기술을 이용하여 보다 정확도가 높고 안정된 시스템을 설계 및 제작하였다. 크기와 주파수 및 파형의 변화 가능한 50KHz의 정현파 전류를 인체에 주입하기 위해 필요한 정밀 정전류원을 설계하여 제작한 결과, 출력 파형의 고조파 왜곡(THD, total harmonic distortion)이 0.0029%이고 진폭 안정도가 0.022%인 전류를 출력 할 수 있었다. 또한, 여러개의 정전류원을 사용함으로써 채 널간 오차를 유발하던 기존의 시스템을 변경하여, 하나의 전류원에서 만들어진 전류를 각 채널로 스위칭하여 공급함으로써 이로 인한 오차를 줄였다. 주입전류에 의해 유기된 전압의 정밀한 측정을 위해 높은 정밀도를 갖는 전압측정기가 필요하므로 차동증폭기, 고속 ADC및 FPGA(field programmable gate array)를 사용한 디지털 위상감응복조기 (phase-sensitive demodulator )를 제작하였다. 이때 병렬 처리를 가능하게 하여 모든 전극 채널에서 동시에 측정을 수행 할 수 있도록 하였으며, 제작된 전압측정기의 SNR(signal-to-noise ratio)은 90dB 이다. 이러한 EIT 시스템을 사용하여 배경의 전해질 용액에 비해 두 배의 저항률을 가지는 물체(바나나)에 대한 기초적인 영상복원 실험을 수행하였다. 본 시스템은 16채널로 제작되었으나 전체를 모듈형으로 설계하여 쉽게 채널의 수를 늘릴 수 있는 장점을 가지고 있어서 향후 64채널 이상의 디지털 EIT시스템을 제작할 계획이며, 인체 내부의 임피던스 분포를 3차원적 으로 영상화하는 연구를 수행 할 예정이다.

3.0T MREIT 시스템을 위한 정전류원의 설계 및 성능검증 (Design and Performance Analysis of Current Source for 3.0T MREIT System)

  • 김규식;오동인;백상민;오석훈;우응제;이수열;이정한
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권3호
    • /
    • pp.165-169
    • /
    • 2004
  • 본 논문에서는 자기공명 임피던스 단층촬영기(MREIT, magnetic resonance electrical impedance tomography)에서 인체에 일정한 전류를 주입해주는 전류주입장치의 설계 및 성능 검증을 다루었다. MREIT는 인체에 전류를 주입하고, 주입전류에 의해 유기된 인체내부의 자속밀도 분포와 인체표면의 전압을 측정하여, 내부의 도전율 분포를 영상화하는 임피던스 영상기술이다. DSP(digital signal processor)를 기반으로 전류주입장치를 설계하였고, 극성을 가지는 펄스 형태로 전류를 주입할 수 있도록 하였다. 3.0T MREIT 시스템의 펄스열(pulse sequence)과 주입전류 파형이 동기화 되도록 제어하였고, 펄스의 폭과 크기를 변경할 수 있도록 하였다. 또한 계측용 증폭기를 사용하여 주입전류에 의해 유기된 전압을 측정하였다. 이러한 모든 기능은 DSP와 직렬통신으로 연결되는 PC가 제어하며 제어용 프로그램은 현재 주입되고 있는 전류의 크기와 파형을 모니터링 할 수 있도록 하였다. 본 논문은 이러한 전류주입장치의 설계와 구현을 기술하며, 전해질 용액 팬텀을 사용한 실험결과를 통한 성능의 분석을 다룬다.

주입전류 패턴에 따른 EIT 방광 모니터링 시스템의 성능분석 (Performance analysis of EIT bladder monitoring system according to input current patterns)

  • 한유정;;김경연
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.164-172
    • /
    • 2019
  • 현재 배뇨 장애를 진단할 수 있는 대표적인 임상 방법들은 침습적이고 고가이며, 장시간 연속적인 모니터링을 수행하기에는 한계가 있다. EIT는 비침습적 방법으로 외부 전극을 통하여 전류를 주입하고 유기된 전압을 측정하여 내부 전기적(임피던스) 특성을 영상화 하는 기술로써, 저렴한 비용으로 방광의 상태를 모니터링 할 수 있는 유용한 기법이 될 수 있다. 전극을 통하여 주입된 전류 패턴에 따라 측정전압 데이터의 신호특성이 달라지고 영상 복원 성능에 영향을 미친다. 본 논문에서는 인체 하복부 부근에 위치한 방광의 크기 변화에 대한 민감도가 극대화될 수 있는 모델링을 위해 입력전류 패턴에 따른 영상 복원 성능을 분석하였다.

저항률이 다른 내부 물체의 검출을 위한 32-채널 생체 임피던스 측정 시스템 (32-Channel Bioimpedance Measurement System for the Detection of Anomalies with Different Resistivity Values)

  • 조영구;우응제
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권6호
    • /
    • pp.503-510
    • /
    • 2001
  • 인체의 각 조직은 서로 다른 저항률(resistivity)을 가지고 있고. 심장의 박동이나 호흡과 같은 생리현상은 해당 생체조직의 임피던스를 변화시킨다. 본 논문에서는 인체 내부에 존재하는 비정상 조직의 크기와 위치를 검출하기 위한 32-채널 생체 임피던스 측정 시스템에 대하여 기술한다. 이러한 기술은 유방암 조직의 경우와 같이 배경 조직과는 저항률이 다른 비정상 조직을 검출하는 경우에 응용할 수 있을 것으로 기대한다. 32-채널 생체 임피던스 측정 시스템을 위하여 32개의 복합형 전극과 32 채널의 정전류원을 사용하였다. 임피던스의 측정을 위해 50kHz의 정현파 전류를 주입하고. 유기되는 전압을 가변 이득 협대역 계측용 증폭기로 측정하고, 그 크기를 위상감응복조기로 검출하였다. 검출된 임피던스 신호는 A/D 변환하여 PC에 입력하였다. 전해질 팬텀을 이용한 실험에서 전체 시스템의 정확도는 2.42%이며, 직경 270mm인 팬텀 내부에 존재하는 직경 8mm 이상인 물체의 크기와 위치를 검출할 수 있었다. 본 연구의 결과를 기초로 다채널 생체 임피던스 측정 시스템의 정확도를 개선하여. 직경 lmm 이내의 물체를 검출하는 것이 향후의 연구 목표이다 이러한 정확도를 가지는 생체 임피던스 계측 시스템을 개발하면. 인체 내부의 임피던스 분포를 측정하는 EIT(electrical impedance tomography) 시스템과, 최근에 연구되고 있는 자기공명 임피던스 단층촬영(MREIT, magnetic resonance electrical impedance tomography)에도 응용이 가능할 것이다.

  • PDF

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권1호
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

MREIT of Postmortem Swine Legs using Carbon-hydrogel Electrodes

  • Minhas, Atul S.;Jeong, Woo-Chul;Kim, Young-Tae;Kim, Hyung-Joong;Lee, Tae-Hwi;Woo, Eung-Je
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권6호
    • /
    • pp.436-442
    • /
    • 2008
  • Magnetic resonance electrical impedance tomography(MREIT) has been suggested to produce cross-sectional conductivity images of an electrically conducting object such as the human body. In most previous studies, recessed electrodes have been used to inject imaging currents into the object. An MRI scanner was used to capture induced magnetic flux density data inside the object and a conductivity image reconstruction algorithm was applied to the data. This paper reports the performance of a thin and flexible carbon-hydrogel electrode that replaces the bulky and rigid recessed electrode in previous studies. The new carbon-hydrogel electrode produces a negligible amount of artifacts in MR and conductivity images and significantly simplifies the experimental procedure. We can fabricate the electrode in different shapes and sizes. Adding a layer of conductive adhesive, we can easily attach the electrode on an irregular surface with an excellent contact. Using a pair of carbon-hydrogel electrodes with a large contact area, we may inject an imaging current with increased amplitude primarily due to a reduced average current density underneath the electrodes. Before we apply the new electrode to a human subject, we evaluated its performance by conducting MREIT imaging experiments of five swine legs. Reconstructed conductivity images of the swine legs show a good contrast among different muscles and bones. We suggest a future study of human experiments using the carbon-hydrogel electrode following the guideline proposed in this paper.

Chemical Shift Artifact Correction in MREIT

  • Minhas, Atul S.;Kim, Young-Tae;Jeong, Woo-Chul;Kim, Hyung-Joong;Lee, Soo-Yeol;Woo, Eung-Je
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권6호
    • /
    • pp.461-468
    • /
    • 2009
  • Magnetic resonance electrical impedance tomography (MREIT) enables us to perform high-resolution conductivity imaging of an electrically conducting object. Injecting low-frequency current through a pair of surface electrodes, we measure an induced magnetic flux density using an MRI scanner and this requires a sophisticated MR phase imaging method. Applying a conductivity image reconstruction algorithm to measured magnetic flux density data subject to multiple injection currents, we can produce multi-slice cross-sectional conductivity images. When there exists a local region of fat, the well-known chemical shift phenomenon produces misalignments of pixels in MR images. This may result in artifacts in magnetic flux density image and consequently in conductivity image. In this paper, we investigate chemical shift artifact correction in MREIT based on the well-known three-point Dixon technique. The major difference is in the fact that we must focus on the phase image in MREIT. Using three Dixon data sets, we explain how to calculate a magnetic flux density image without chemical shift artifact. We test the correction method through imaging experiments of a cheese phantom and postmortem canine head. Experimental results clearly show that the method effectively eliminates artifacts related with the chemical shift phenomenon in a reconstructed conductivity image.