DOI QR코드

DOI QR Code

Chemical Shift Artifact Correction in MREIT

  • Minhas, Atul S. (College of Electronics and Information, Kyung Hee University) ;
  • Kim, Young-Tae (College of Electronics and Information, Kyung Hee University) ;
  • Jeong, Woo-Chul (College of Electronics and Information, Kyung Hee University) ;
  • Kim, Hyung-Joong (College of Electronics and Information, Kyung Hee University) ;
  • Lee, Soo-Yeol (College of Electronics and Information, Kyung Hee University) ;
  • Woo, Eung-Je (College of Electronics and Information, Kyung Hee University)
  • Published : 2009.12.31

Abstract

Magnetic resonance electrical impedance tomography (MREIT) enables us to perform high-resolution conductivity imaging of an electrically conducting object. Injecting low-frequency current through a pair of surface electrodes, we measure an induced magnetic flux density using an MRI scanner and this requires a sophisticated MR phase imaging method. Applying a conductivity image reconstruction algorithm to measured magnetic flux density data subject to multiple injection currents, we can produce multi-slice cross-sectional conductivity images. When there exists a local region of fat, the well-known chemical shift phenomenon produces misalignments of pixels in MR images. This may result in artifacts in magnetic flux density image and consequently in conductivity image. In this paper, we investigate chemical shift artifact correction in MREIT based on the well-known three-point Dixon technique. The major difference is in the fact that we must focus on the phase image in MREIT. Using three Dixon data sets, we explain how to calculate a magnetic flux density image without chemical shift artifact. We test the correction method through imaging experiments of a cheese phantom and postmortem canine head. Experimental results clearly show that the method effectively eliminates artifacts related with the chemical shift phenomenon in a reconstructed conductivity image.

Keywords

References

  1. N. Zhang, Electrical Impedance Tomography based on Current Density Imaging, Toronto, Canada: MS Thesis, Dept. of Elec. Eng, 1992
  2. E.J. Woo, S.Y. Lee, and C.W. Mun, "Impedance tomography using internal current density distribution measured by nuclear magnetic resonance", SPIE, vol. 2299, pp. 377-385, 1994 https://doi.org/10.1117/12.179269
  3. O. Birgul and Y. Z. Ider, "Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography", Proc. IXth Int. Conf. Elec. Bio-Impedance Heidelberg Germany, pp. 418-419, 1995
  4. E.J. Woo and J.K. Seo, "Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging", Physiol. Meas., vol. 29, pp. R1-R26, 2008 https://doi.org/10.1088/0967-3334/29/10/R01
  5. G.C. Scott, M.L.G. Joy, R.L. Armstrong, and R.M. Henkelman, "Measurement of nonuniform current density by magnetic resonance", IEEE Trans. Med. Imag., vol. 10, pp. 362-374, 1991 https://doi.org/10.1109/42.97586
  6. E.M. Haacke, R.W. Brown, M.R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, John Wiley and Sons Inc., 1999
  7. W. H. Dixon, "Simple proton spectroscopic imaging", Radiology, vol. 153, pp. 189-194, 1984
  8. J. Ma, "Dixon techniques for water and fat imaging", Mag. Res. Med., vol. 28, pp. 543-558, 2008
  9. B.D. Coombs, J. Szumowski, and W. Coshow, "Two-point Dixon technique for water-fat signal decomposition with inhomogeneity correction", Mag. Res. Med., vol. 38, pp. 884-889, 1997 https://doi.org/10.1002/mrm.1910380606
  10. C.C. Lodes, J.P. Felmlee, R.L. Ehman, C.M. Sehgal, J.F. Greenleaf, G.H. Glover, and J.E. Gray, "Proton MR chemical shift imaging using double and triple phase contrast acquisition methods", J. Comp. Ass. Tomo., vol. 13, no. 5, pp. 855-861, 1989 https://doi.org/10.1097/00004728-198909000-00020
  11. G. H. Glover and E. Schneider, "Three-point Dixon technique for true water/fat decomposition with inhomogeneity correction", Mag. Res. Med., vol. 18, pp. 371-383, 1991 https://doi.org/10.1002/mrm.1910180211
  12. P.A. Hardy, R. S. Hinks, and J. A. Tkach, "Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique", J. Mag. Reson. Imaging, vol. 5, pp. 181-185, 1995 https://doi.org/10.1002/jmri.1880050213
  13. Q.S. Xiang and L. An, "Water-fat imaging with direct phase encoding" J. Mag. Reson. Imaging, vol. 7, pp. 1002-1015, 1997 https://doi.org/10.1002/jmri.1880070612
  14. J. Ma, S.K. Singh, A.J. Kumar, N.E. Leeds, and L.D. Broemeling, "Method of efficient fast spin-echo Dixon imaging", Mag. Res. Med., vol. 48, pp. 1021-1027, 2002 https://doi.org/10.1002/mrm.10306
  15. A.R. Pineda, S.B. Reeder, Z. Wen, and N.J. Pelc"Cramaer-Rao bounds for three-point decomposition of water and fat", Mag. Res. Med., vol. 54, pp. 625-635, 2005 https://doi.org/10.1002/mrm.20623
  16. S.B. Reeder, Z. Wen, H. Yu, A.R. Pineda, G.E. Gold, M. Markl, and N.J. Pelc, "Multi-coil Dixon chemical species separation with an iterative least-squares estimation method", Mag. Res. Med., vol. 51, pp. 35-45, 2004 https://doi.org/10.1002/mrm.10675
  17. C. Park, B.I. Lee, O. Kwon, and E.J. Woo, "Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT", Physiol. Meas., vol. 28, pp. 117-127, 2007 https://doi.org/10.1088/0967-3334/28/2/001
  18. H.J. Kim, B.I. Lee, Y. Cho, Y.T. Kim, B.T. Kang, H.M. Park, S.Y. Lee, J.K. Seo, and E.J. Woo, "Conductivity imaging of canine brain using a 3 T MREIT system: postmortem experiments", Physiol. Meas., vol. 28, pp. 1341-1353, 2007 https://doi.org/10.1088/0967-3334/28/11/002
  19. J.K. Seo, J.R. Yoon, E.J. Woo, and O. Kwon, "Reconstruction of conductivity and current density images using only one component of magnetic field measurements", IEEE Trans. Biomed. Eng., vol. 50, pp. 1121-1124, 2003 https://doi.org/10.1109/TBME.2003.816080
  20. S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, and J.K. Seo, "Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography", Phys. Med. Biol., vol. 48, pp. 3101-3116, 2003 https://doi.org/10.1088/0031-9155/48/19/001
  21. J.K. Seo, S.W. Kim, S. Kim, J. J. Liu, E.J. Woo, K. Jeon, and C-O Lee, "Local harmonic Bz algorithm with domain decomposition in MREIT: computer simulation study", IEEE Trans. Med. Imag., vol. 27 (12), pp. 1754-1761, 2008 https://doi.org/10.1109/TMI.2008.926055
  22. K. Jeon, H.J. Kim, C-O Lee, E.J. Woo, and J.K. Seo, "CoReHA: conductivity reconstructor using harmonic algorithms for magnetic resonance electrical impedance tomography (MREIT)", J. Biomed. Eng. Res., 2009
  23. G.C. Scott, M.L.G. Joy, R.L. Armstrong, and R.M. Henkelman, "Sensitivity of magnetic-resonance current density imaging", J. Mag. Res., vol. 97, pp. 235-254, 1992
  24. R. Sadleir, S. Grant, S.U. Zhang, B."Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11 T field strengths", Physiol. Meas., vol. 26, pp. 875-884, 2005 https://doi.org/10.1088/0967-3334/26/5/023
  25. M.J. Hamamura, O. Nalcioglu, and L.T. Muftuler, "Correction of chemical shift artifact in magnetic resonance electrical impedance tomography", Proc. Intl. Soc. Mag. Reson. Med. Conf., Honolulu, Hawai, USA, 17, pp. 4658, April 18-24, 2009
  26. A.S. Minhas, H.J. Kim, Y.T. Kim, W.C. Jeong, T.H. Lee, E.J. Woo, and S.Y. Lee, “Chemical shift artifact correction in MREIT using 3-point Dixon technique”, Proc. 10th Conf. EIT (Manchester, UK), June 16-19, 2009