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Genetic Algorithm Approach to Image Reconstruction in Electrical
Impedance Tomography

Ho-Chan Kim#*, Chang-Jin Boo*, Yoon-Joon Lee** and Chang-Ik Kang***

Abstract - In electrical impedance tomography (EIT), the internal resistivity distribution of the
unknown object is computed using the boundary voltage data induced by different current patterns
using various reconstruction algorithms. This paper presents a new image reconstruction algorithm
based on the genetic algorithm (GA) via a two-step approach for the solution of the EIT inverse
problem, in particular for the reconstruction of “static” images. The computer simulation for the 32
channels synthetic data shows that the spatial resolution of reconstructed images in the proposed
scheme is improved compared to that of the modified Newton-Raphson algorithm at the expense of an

increased computational burden.
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1. Introduction

Electrical impedance tomography (EIT) plays an
important role in monitoring tools for the process
engineering such as biomedical, geological and chemical
engineering, due to its relatively cheap electronic hardware
requirements and non-intrusive measurement properties [1-
3]. In EIT, different current patterns are injected to the
unknown object through electrodes and the corresponding
voltages are measured on its boundary surface. The
physical relationship between inner resistivity (or
conductivity) and boundary surface voltage is governed by
the nonlinear Laplace equation with appropriate boundary
conditions so that it is impossible to obtain the closed-form
solution for the resistivity distribution. Hence, the internal
resistivity distribution of the unknown object is computed
upsing the boundary voltage data based on various
reconstruction algorithms.

Yorkey et al. [4] developed a modified Newton-
Raphson (mNR) algorithm for a static EIT image
reconstruction and compared it with other existing
algorithms such as backprojection, perturbation and double
constraints methods. They concluded that the mNR reveals
relatively good performance in terms of convergence rate
and residual error compared to that of the other methods.
However, in real situations, the mNR method often fails to
obtain satisfactory images from physical data due to large
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modeling errors, poor signal to noise ratios (SNRs) and ill-
conditioned (ill-posed) characteristics. That is, the ratio
between the maximum and minimum eigenvalues of the
information matrix (or Hessian matrix) is very large. In
particular, the ill-conditioning of the information matrix
results in an inaccurate matrix inverse so that the resistivity
update process is very sensitive to the modeling and
measurement errors.

Genetic algorithms (GAs) have recently found extensive
applications in solving global optimization searching
problems [5]. They are useful when the closed-form
optimization technique cannot be applied. GAs are parallel,
global search techniques that emulate natural genetic
operators. Because a GA simultaneously evaluates many
points within a parameter space, it is more likely to
converge toward the global solution. It does not need to
assume that the search space is differentiable or continuous,
and can also iterate several times on each datum received.
The GAs apply operators inspired by the mechanics of
natural selection to a population of binary strings encoding
the parameter space. At each generation, it explores
different areas of the parameter space, and then directs the
search to regions where there is a high probability of
finding improved performance. By working with a
population of solutions, the algorithms can in effect search
for many local minima, and thereby increase the likelihood
of finding the global minimum. Global optimization can be
achieved via a number of genetic operators, e.g.,
reproduction, mutation, and crossover.

In the EIT for two-phase flow visualization, the cross-
sectional resistivity distribution of each phase at a certain
instance is reconstructed as an image. The major difficulties
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in impedance imaging are in the nonlinearity of the
problem itself and the poor sensitivity of the boundary
voltages to the resistivity of the flow domain deep inside.
Several researchers suggested various element or mesh
grouping methods where they force all meshes belonging
to certain groups to have identical resistivity values [6, 7].

In this paper, we will discuss the image reconstruction in
EIT based on GA via a two-step approach. We have broken
the procedure for obtaining the internal resistivity
distribution into two parts. In the first step, each mesh is
classified into three mesh groups: target, background, and
temporary groups. The mNR algorithm can be used to
determine the group region. In the second step, the values
of these resistivities are determined using the genetic
algorithm. This two-step approach allows us to better
constrain the inverse problem and subsequently achieve a
higher spatial resolution.

2. Image reconstruction using GA in EIT

The numerical algorithm used to convert the electrical
measurements at the boundary to a resistivity distribution
is described here. The algorithm consists of iteratively
solving the forward problem and updating the resistivity
distribution as dictated by the formulation of the inverse
problem. The forward problem of EIT calculates the
boundary measurements given the electrical resistivity
distribution, and the inverse problem of EIT takes potential
measurements at the boundary and forms an image of the
resistivity distribution.

2.1 The forward problem

When electrical current [,(I =1,---,L) is injected into

the object Qe R through the electrode ¢ (I =1,---,L)
attached on the boundary 0Q , and the resistivity
distribution p(x,y) is known for the €, the corresponding

induced electrical potential u(x,y) can be determined

uniquely from the nonlinear Laplace equation, which in
turn can be derived from the Maxwell equation, Ohm’s law,
and the Neumann type boundary condition. The complete
electrode model takes into account both the shunting effect
of the electrode and the contact impedances between the
electrodes and tissue. The equations of the complete
electrode model are
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where z, is effective contact impedance between [ th
electrode and tissue, U, is the measured potentials and n

is outward unit normal. In addition, we have the following
two conditions for the injected currents and measured
voltages by taking into account the conservation of
electrical charge and appropriate selection of ground
electrode, respectively.
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The computation of the potential u(x,y) for the given
resistivity distribution p(x,y) and boundary condition
I, is called the forward problem. The numerical solution

for the forward problem can be obtained using the finite
element method (FEM). In the FEM, the object area is
discretized into small elements having a node at each
corner. It is assumed that the resistivity distribution is
constant within an element. The potential at each node is
calculated by discretizing (1) into Yv=c , where
Ye R™ is so-called stiffness matrix and N is the
numbers of FEM nodes. Y and ¢ are the functions of the
resistivity distribution and the injected current patterns,
respectively.

2.2 The inverse problem

The inverse problem, also known as the image
reconstruction, consists in reconstructing the resistivity
distribution p(x,y) from potential differences measured

on the boundary of the object. Ideally, knowing the
potential of the entire boundary makes the correspondence
between the resistivity distribution and the potential
biunivocal. The relatively simple situation depicted so far
does not hold exactly in the real world. The methods used
for solving the EIT problem search for an approximate
solution, i.e., for a resistivity distribution minimizing some
sort of residual involving the measured and calculated
potential values. From a mathematical point of view, the
EIT inverse problem consists in finding the coordinates of
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a point in a N -dimensional hyperspace, where N is the
number of discrete elements whose union constitutes the
tomographic section under consideration. In the past,
several EIT image reconstruction algorithms for the current
injection method have been developed by various authors.
A review of these methods is given in [8]. To reconstruct
the resistivity distribution inside the object, we must solve
the nonlinear ill-posed inverse problem. Regularization
techniques are needed to obtain stable solutions due to the
ill-posedness.

A generalized Tikhonov regularized version of the EIT
inverse problem can be written in the form

¥(p) = min{lV ~U(p) I +a R(p-p )17} (5)

where pe R"and p’are the resistivity distribution and a
priori information of p , respectively. U(p)e R™ is the

vector of voltages obtained from the model with known p,

V € R* are the measured voltages and R and « are
the regularization matrix and the regularization parameter,
respectively. L, K, and M are the numbers of electrodes on
the surface, injected current patterns, and finite elements in
FEM respectively. There are many approaches in the
literature [9-12] to determine R and ¢, but the usual

choice is to fix R=1, and to adjust o empirically.
Minimizing the objective function ¥(p) gives an

aquation for the update of the resistivity vector

k+1

pk+1 =pk +Ap ©
Ap* =(H, +al) {J,(V-U(p")-a(p* - p")}

where the partial derivative of ¥ with respectto p has

been approximated by a Taylor series expansion around

p* . The Jacobian J, is a matrix composed of the

derivative of the vector of predicted potentials with respect
to the unknown resistivities. The Jacobian is derived from

the finite element formulation given by J, =%\g . The
(P
Hessian H, is the second derivative of the predicted

potentials with respect to the resistivity and is
approximated as the square of the Jacobian for
computational efficiency. Since the objective function
¥(p) is multimodal (i.e., it presents several local

minima), the inversion procedure does not always converge
to the true solution. The reconstruction algorithms are
likely to be trapped in a local minimum and sometimes the
best solution of a static EIT problem is rather
unsatisfactory.

In particular, two characteristics of genetic algorithms
appear to be of value in EIT reconstruction; no evaluation
of function derivatives is needed and no assumption on
function continuity needs to be made. The preceding
considerations suggest the viability of employing GA’s for
the solution of the EIT problem, according to the procedure
described in the following section.

2.3 The GA approach to EIT

In two-phase flow fields, we may assume that there are
only two different representative resistivity values; one
resistivity value for the background and the other for the
target. Here, the target need not be a single segment. It may
be multiple segments of the same resistivity value.

In this paper, we will discuss the image reconstruction in
EIT using a two-step approach. We have broken the
procedure for obtaining the internal resisitivity distribution
into two parts. In the first step, we adopted a mNR method
as a basic image reconstruction algorithm. After a few
initial mNR iterations performed without any grouping, we
classify each mesh into one of three mesh groups:
BackGroup (or TargetGroup) is the mesh group with the
resistivity value of the background (or target). TempGroup
is the group of meshes neither in BackGroup nor in
TargetGroup. All meshes in BackGroup and in
TargetGroup are forced to have the same but unknown
resistivity value (p,,, and p,, ), respectively. However,
all meshes in TempGroup can have different resistivity
values ( p,,,,» i=1---,n~2).

In the simplest implementation of GA in EIT, a set
(population) of EIT images is generated, usually at random.
Each individual consists in a 7 -tuple of resistivity values
(n is the number of elements discretizing the section
under measurement), i.e., the EIT chromosome is a
sequence of n resistivities. After mesh grouping, in this
paper, we will determine the values of these resistivities
using two GAs. The first GA searches for the optimal
range of resistivities by generating and evolving a
population of individuals whose chromosome consists of
two real genes ( p,. and p, ), representing the

BackGroup and TargetGroup values of the unknown
resistivity distribution. Furthermore, we will use p, .,
(or p,, ) as the minimum (or maximum) values of the

unknown resistivity distribution. The population randomly
generated in this first GA is constrained between the
minimum and maximum resistivities obtained in the first GA.
The second GA solves the EIT problem, searching for the
resistivity distribution (p,,,,,, i =1,---,n—2) minimizing
the reconstruction error. The computed resistivities are
constrained between the minimum and maximum values
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obtained in the first GA.

A fitness value is computed for each individual. In the
present case, the fitness function is the reciprocal of the
reconstruction error, a function of the relative difference
between the computed and measured potentials on the
object boundary

_ 1| Le=n2 _ -
Py 1){ § V() U,«q )

2 < v,
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where L is the number of electrodes on the surface.

The next step is to rank the individuals on their fitness
value, giving the fitter ones more chance to contribute to
the successive generation. New individuals are then created
by crossover (combination of couples of resistivity
'sequences) and mutation (low-probability random change
of some resistivity value in the genome).

After this step, the chosen termination criterion is
applied, i.e., we see if convergence has been reached (the
residue is below a given value) or if the maximum number
of generations has been exceeded. If convergence fails, the
whole selection+crossover+mutation procedure is applied
to the current population, otherwise the fittest individual is
assumed as the solution of the EIT problem. The
termination condition adopted here is based on evaluating
the progress made by the algorithm in a predefined number
of generations and terminating the search if the fitness of
the best chromosome is above the threshold value.

3. Computer simulation

The proposed algorithm has been tested by comparing
its results for numerical simulations with those obtained by
the modified Newton—Raphson (mNR) method. In order to
test the proposed algorithm, the complete electrode model
with the finite element method (FEM) was used to
calculate the measurements V . For the current injection the
trigonometric current patterns were used. For the forward
calculations, the domain € is the unit disc and the mesh
of 3104 triangular elements (M=3104) with 1681 nodes
(N=1681) and 32 channels (L=32) was used as shown in
Fig. 1(a). The FEM elements were grouped together such
that a total of 776 elements (M=776) with 453 nodes
(N=453) were obtained for the inverse calculations as
shown in Fig. 1(b). In this paper, under the assumption that
the resistivity varies only in the radial direction within a
cylindrical coordinate system, the results of the two inverse
problem methods can be easily compared. The resistivity
profile given to the finite element inverse solver varies
from the center to the boundary of the object and is divided
into 9 radial elements { p,,--+, py ) in Fig. 1(a).

The resolution of the method is determined by a number
of variables including resistivity contrast and distribution,
position within the vessel, and even current pattern. The
ability to positively distinguish between two similar
resistivity distributions also depends upon the precision of
the voltage measurements. These factors necessitate
caution when designing an experiment and interpreting
results. Therefore, to verify the appropriateness of EIT for
this application, a computational experiment was
conducted.
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Fig. 1 The Finite element mesh used in the calculation.
(The resistivities of the elements within an annular ring are identi
cal.) (a) mesh for forward solver, (b) mesh for inverse solver.

Synthetic boundary potentials were computed for
idealized resistivity distributions using the finite element
method described earlier. The boundary potentials were
then used for inversion and the results were compared to
the original resistivity profiles. The resistivity profile
appearing in Fig. 2 contains two large discontinuities in the
original resistivity distribution. The evaluation of the
algorithm using large step changes at r/R=0.56 and 0.81
is a severe test on the inverse method, which it handles
well, since smoother variations in resistivity are expected.
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Fig. 2 True resistivities (solid line) and computed resistive-

ties using mNR (dashed line) and GA (dotted line).

We started the mNR iteration without any mesh
grouping with a homogeneous initial guess. In Table 1, we
see that the mNR algorithm may roughly estimate the
given true resistivities. Since the mNRs have a large error
at the boundary of target and background in Fig. 2, we
cannot obtain reconstructed images of high spatial
resolution. This kind of poor convergence is a very typical
problem in the NR-type algorithms.

However, we can significantly improve the mNR’s poor
convergence by adopting the proposed GA via a two-step
approach as follows.

Table 1 True resistivities and computed resistivities using

mNR and GA

PP | P3| Ps| Ps | Ps| Pr | Ps| Po
Real| 0.5 | 0505|0606 |06] 06| 06106
mNR| .516 | .495] .489 ] .535] .594 | .604 | .599 | .601 | .600
GA | .505].505 ] .505 | .600 | .600 | .600 | .600 | .600 | .600

In the first step, we adopted a mNR method as a basic
image reconstruction algorithm. After a few initial mNR
iterations performed without any grouping, we classified
each mesh into one of three mesh groups. As shown in
Table 1, it should be noted that 2 meshes (p,,p,) and 5

meshes (p,, s, Py, Ps.Py) among 9 are grouped into
TargetGroup (p,,,)and BackGroup (p,..), respectively.
The remaining meshes (p,, p, ) are grouped into TempGroup.

Hence, the number of unknowns is reduced to 4.

In the second step, after mesh grouping, we will
determine the values of these resistivities using two GAs.
The first GA searches for the optimal range of resistivities
bv generating and evolving a population of individuals
whose chromosome consists of two real genes ( p,.,

and p, ), representing the BackGroup and TargetGroup

values of the unknown resistivity distribution. Furthermore,
we will use p, ., (orp, ) as the minimum (or maximum)

values of the unknown resistivity distribution. The initial
value of p, and p,,, are the average resistivity values

of meshes in BackGroup and TargetGroup, respectively.
Table 2 shows the computed resistivities as a function of
the population size at generation 200. The reconstructed
errors at a given generation generally decrease when the
population size is increased. Hence, even if error does not
depend linearly on the population size due to the stochastic
nature of GA’s, 40 or 60-individual GA reconstructions
gives a higher spatial resolution than a mNR method.

Table 2 True and computed resistivities using GA vs.
population size at generation 200

POp. size pback pmr
True | Computed | True Computed
20 05 0.5031 0.6 0.5685
40 0.5 0.4954 0.6 0.6038
60 0.5 0.4998 0.6 0.6039

The second GA solves the EIT problem, searching for
the resistivities of remainders ( p,,p,) minimizing the

reconstruction error. The computed resistivities in this
second GA are constrained between the minimum and
maximum values obtained in the first GA. In Fig. 1, the
inverted profile using GA matches the original profile very
well near the wall at 1/R=1.0 as well as the center at 1/R
=0.0. Furthermore, the GA reconstruction is practically
perfect for the jump of resistivty at r/R =0.56 and 0.81.

4. Conclusion

In this paper, an EIT image reconstruction method based on
GA via a two-step approach was present to improve the
spatial resolution. A technique based on two binary-coded
GAs with the knowledge of mNR was developed for the
solution of the EIT inverse problem. One GA calculates the
resistivity values of the target group and background group,
and the other GA is used to search for the resistivities of
remainders. Although GA is expensive in terms of computing
time and resources, which is a weakness of the method that
renders it presently unsuitable for real-time tomographic
applications, the exploitation of a priori knowledge produces
very good reconstructions. Further extensions include an EIT
image reconstruction to multi-phase flow fields.
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