DOI QR코드

DOI QR Code

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University) ;
  • Cho Young (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University) ;
  • Hwang Yeon-Kyung (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University) ;
  • Oh Suk-Hoon (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University) ;
  • Woo Eung-Je (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University) ;
  • Lee Soo-Yeol (Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University)
  • Published : 2006.02.01

Abstract

Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

Keywords

References

  1. N. Zhang, Electrical Impedance Tomography based on Current Density Imaging, MS Thesis, Dept. of Elec. Eng., Univ. of Toronto, Toronto, Canada, 1992
  2. E. J. Woo, S. Y. Lee, and C. W. Mun, 'Impedance tomography using internal current density distribution measured by nuclear magnetic resonance', SPIE, Vol. 2299, pp.377-385, 1994
  3. Y. Z. Ider and O. Birgul, 'Use of the magnetic field generated by the internal distribution of injected currents for Electrical Impedance Tomography (MR-EIT)', Elektrik, Vol. 6, pp.215-225, 1998
  4. O. Kwon, E. J. Woo, J. R. Yoon, and J. K. Seo, 'Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm', IEEE Trans. Biomed. Eng., Vol. 48, pp.160-167, 2002
  5. H. S. Khang, B. I. Lee, S. H. Oh, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon,J. R. Yoon, and J. K. Seo, 'J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images', IEEE Trans. Med. Imag., Vol. 21, pp.695-702, 2002 https://doi.org/10.1109/TMI.2002.800604
  6. O. Birgul, B. M. Eyuboglu, and Y. Z. Ider, 'Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns', Phys. Med. BioI., Vol. 48, pp. 653-671,2003 https://doi.org/10.1088/0031-9155/48/5/307
  7. B. I. Lee, S. H. Oh, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon, J. K. Seo, and W. S. Baek, 'Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT)', Physiol. Meas., Vol. 24, pp.579-589, 2003 https://doi.org/10.1088/0967-3334/24/2/367
  8. Y. Z. Ider, S. Onart, and W. R. B. Lionheart, 'Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT),' Physiol. Meas., Vol. 24, pp.591-604, 2003 https://doi.org/10.1088/0967-3334/24/2/368
  9. M. L. Joy, 'MR current density and conductivity imaging: the state of the art', Proc. 26th Ann. Int. Conf. IEEE EMBS, San Francisco, CA, USA, pp.5315-5319, 2004
  10. J. K. Seo, J. R. Yoon, E. J. Woo, and O. Kwon, 'Reconstruction of conductivity and current density images using only one component of magnetic field measurements', IEEE Trans. Biomed. Eng., Vol. 50, pp.1121-1124, 2003 https://doi.org/10.1109/TBME.2003.816080
  11. S. H. Oh, B. I. Lee, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon, and J. K. Seo, 'Conductivity and current density image reconstruction using harmonic $B_z$ algorithm in magnetic resonance electrical impedance tomography,' Phys. Med. BioI., Vol. 48, pp.3101-3116, 2003 https://doi.org/10.1088/0031-9155/48/19/001
  12. Y. Z. Ider and S. Onart, 'Algebraic reconstruction for 3D MR-EIT using one component ofmagnetic flux density'.Physiol. Meas., Vol. 25, pp.281-294, 2004 https://doi.org/10.1088/0967-3334/25/1/032
  13. C. Park, E. J. Park, E. J. Woo, O. Kwon, and J. K. Seo, 'Static conductivity imaging using variational gradient $B_{z}$ algorithm in magnetic resonance electrical impedance tomography', Physiol. Meas., Vol. 25, pp.257-269, 2004 https://doi.org/10.1088/0967-3334/25/1/030
  14. C. Park, O. Kwon, E. J. Woo, and J. K. Seo, 'Electrical conductivity imaging using gradient $B_{z}$ decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT)', IEEE Trans. Med. Imag., Vol. 23, pp.388-394, 2004 https://doi.org/10.1109/TMI.2004.824228
  15. O. Kwon, C. Park, E. J. Park, J. K. Seo, and E. J. Woo, 'Electrical conductivity imaging using a variational method in $B_{z}$-based MREIT', Inv. Prob., Vol. 21, pp.969-980, 2005 https://doi.org/10.1088/0266-5611/21/3/011
  16. K. S. Kim, T. I. Oh, S. M. Paek, S. H. Oh, E. J. Woo, S. Y. Lee, and J. Yi, 'Design and performance analysis of current source for 3.0T MREIT system', J. Biomed. Eng. Res., Vol. 25, pp.165-169, 2004 https://doi.org/10.2220/biomedres.25.165
  17. S. H. Oh, B. I. Lee, T. S. Park, S. Y. Lee, E. J. Woo, M. H. Cho, O. Kwon, and J. K. Seo, 'Magnetic resonance electrical impedance tomography at 3 Tesla field strength', Mag. Reson. Med., Vol. 51, pp.1292-1296, 2004 https://doi.org/10.1002/mrm.20091
  18. S. H. Oh, B. I. Lee, E. J. Woo, S. Y. Lee, T. S. Kim, O. Kwon, and J. K. Seo, 'Electrical conductivity images of biological tissue phantoms in MREIT', Physiol. Meas., Vol. 26, pp.S279-288, 2005 https://doi.org/10.1088/0967-3334/26/2/026
  19. G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Henkelman, 'Measurement of nonuniform current density by magnetic resonance',IEEE Trans. Med. Imag., Vol. 10, pp.362-374, 1991 https://doi.org/10.1109/42.97586
  20. G. C. Scott, M. L. G. Joy, R. L. Armstrong, and R. M. Hankelman, 'Sensitivity of magnetic resonance current density imaging', J. of Magn. Reson., Vol. 97, pp.235-254, 1992
  21. R. Sadleir, S. Grant, S. U. Zhang, B. I. Lee, H. C. Pya, S. H. Oh, C. Park, E. J. Woo, S. Y. Lee, O. Kwon, and J. K. Seo, 'Noise analysis in MREIT at 3 and 11 Tesla field strength', Physiol. Meas., Vol. 26, pp.875-884, 2005 https://doi.org/10.1088/0967-3334/26/5/023
  22. J. P. Reilly, Applied Bioelectricity: From Electrical Stimulation To Electropathology, Springer-Verlag, NY, USA, 1998
  23. S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, McGraw-Hill, NY, USA, 2002