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Regularized Modified Newton-Raphson Algorithm for
Electrical Impedance Tomography Based on the
Exponentially Weighted Least Square Criterion
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Abstract
In ElT(electrical impedance tomography), the internal resistivity(or conductivity) distribution of the unknown object
is estimated using the boundary voltage data induced by different current patterns using various reconstruction
algorithms. In this paper, we present a regularized modified Newton-Raphson(mNR) scheme which employs additional
a priori information in the cost functional as soft constraint and the weighting matrices in the cost functional are
selected based on the exponentially weighted least square criterion. The computer simulation for the 32 channels

synthetic data shows that the reconstruction performance of the proposed scheme is improved compared to that of the

conventional regularized mNR at the expense of slightly increased computational burden
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engineering such as biomedical, geological and chemical
engineering, due to its relatively cheap electronic
hardware requirements and nonintrusive measurement
properties [1-3). In EIT different current patterns are
injected to the unknown object through electrodes and
the corresponding voltages are measured on its boundary
surface. The physical relationship between inner
resistivity(or conductivity) and boundary surface voltage
is governed by the nonlinear Laplace equation with
appropriate boundary conditions so that it is impossible
to obtain the closed-form solution for the resistivity(or
conductivity) distribution. Hence, the internal
resistivity(or conductivity) ‘distribution of the unknown
object is estimated using the boundary voltage data
based on various reconstruction algorithms.

Yorkey et all4] developed a modified Newton-
Raphson(mNR) algorithm for static EIT image
reconstruction and compared it wi.th other existing
algorithms such as backprojection, perturbation and
double constraints methods. They concluded that the
mNR reveals relatively good performance in terms of
convergence rate and residual error compared to that of
the other methods.

However, in real situations, the mNR method is
often failed to obtain satisfactory images from physical
data due to large modeling error, poor signal to noise
ratios(SNRs) and ill-conditioned(ill-posed) characteristics.
That is, the ratio between the maximum and minimum
eigenvalues of the information matrix(or Hessian matrix)
is very large. In particular, the ill-conditioning of the
information matrix results in an inaccurate matrix
inverse so that the resistivity(or conductivity) update
process is very sensitive to the modeling and
measurement errors.

To get around such ill-conditioned difficulties there
have been various regularization approaches in the
literature[S-11], but it still remains a great deal of
debate. Basically, regularization methods have a

smoothing effect on the iterative procedure, improving

the conditioning of the information matrix. Among them,
Murai et al.[5] used singular value decomposition(SVD)
method and Akaikes information criterion[6] omitting
very small eigenvalues of the Hessian matrix, therefore
reducing the condition number of the Hessian matrix.
Levenberg al.[7] introduced matrix coefficient method
which has better reconstruction performance than the
SVD method. More recently, Cohen-Bacric et al.[8]
suggested another regularization scheme using variance
uniformization constraint. In addition, Tikhonov and
subspace regularization techniques are employed by
Vauhkonen et al.[9].

In this paper, we developed a regularized mNR
algorithm for static EIT imaging based on the
exponentially weighted least square criteria. The main
idea of this paper is that the additional regularization
constraint which incorporates a priori information into
the object functional is helpful to stabilize the mNR
reconstruction  algorithm only in the transient
convergence period. As the iterative solution converges
to the real solution, the ill-conditioning problem becomes
less severe. Therefore, in the steady state period, it is
desirable to discard the additional constraint to avoid
any distortion in final reconstructed image. To
accomplish this purpose, exponential weighting matrices
are employed to the objective functional, which are
functions of the iteration number. Computer simulations
for the 32-channel synthetic data are provided to

illustrate the performance of the proposed algorithm.

I{. Problem Formulation and reconstruction

algorithm

2.1 Governing Equation
When electrical currents £, ((=1.2...E) is injected
into the  object QeR™ through  electrodes

€(=12...E} attached on the boundary 0Q and the
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resistivity distribution p(x,y) is known for the 0, the

corresponding induced electrical potential u(x,¥} can be
determined uniquely from the nonlinear Laplace equation
which can be derived from the Maxwell equation and

Ohms law, and the Neumann type boundary condition as

follows:
VopTVu=0 ing )
ou
o :
L p 5;dS =1 on e (I=1,2,..E), 1))

where, " is outward pointing normal vector. In
addition, we have the following two conditions for the
injected currents and measured voltages by taking into
account the conservation of electrical charge and
appropriate selection of ground electrode, respectively.

1,=0
, ©)

M=
[

M=

v, =0
: , @

where, Vi({=12....E} arc the induced voltages on the

electrodes.
The computation of the potential u(x,¥) for the
given resistivity distribution P(%Y)  and boundary

condition {; is called the forward problem. The
numerical solution for the forward problem can be
obtained using the finite element method(FEM). In the
FEM, the object area is discretized into small elements
having a node at each corner. It is assumed that the
resistivity distribution is constant within an element. The
potential at each node is calculated by discretizing the
Eq. (1) into Yy=¢, where YeRY" is so-called
stiffness matrix and N is the numbers of FEM nodes. Y
and ¢ are the functions of the resistivity distribution and

the injected current patterns, respectively.

2.2 A brief review of the conventional regularized

mNR

To reconstruct the resistivity distribution inside the
object, we have to solve the nonlinear ill-posed inverse
problem. The regularization techniques are needed to
obtain stable solutions due to the ill-posedness. The
regularized cost functional to be minimized is written as
follows:

1
¢(Pk)=3[HVO—f(Pk)H+aH Lp, H], )
where, ¥, € REM is stacked boundary measured voltage

and E and P are the numbers of electrodes on the

surface and injected current patterns, respectively.

P R™ is the resistivity distribution at the K -th
iteration and M is the numbers of finite elements in
FEM. In Eq. (5, LeR™™ and g are the
regularization matrix and regularization parameter,
respectively. There are many approaches in the

literature[8-11] to construct L and &, but the usual
choice is to fix L=1y and to adjust @ empirically.
Then, the mNR-type resistivity update equation is
given by the following iterative form as;
Pra = Py +Ap, , ©)
where,

Ap ={[S (pI f (p)+al}”
AL PV V, - f(p)~alp}. (D

In Eq. (7), f “(P+) stands for the Jacobian matrix
which is defined by

o), s;’i
P, ®

and the ill-conditioning of the information matrix is

smoothed due to the regularization term.

2.3 The proposed regularized mNR scheme
The measurement equation can be described as the

following nonlinear mapping with measurement error:

(251)
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Vo=7(p)+w,. ©)
It is assumed that the measurement error Wk is white
Gaussian noise with variance as:
T
Elww,]=R, (10)
An additional information about the resistivity

distribution can be utilized as the soft constraint to
improve the performance of the reconstruction algorithm.

L(p = p) =ty (11

RMXM

.
where, Le is regularization matrix and P is a

priori information about true resistivity distribution. In

Eq. (11), Hx represents the uncertainty in the physical

adherence of the constraint. Also, it is assumed that the

uncertainty Hx is white Gaussian noise with variance

as:

Elu ;1= 0, 12)

By taking into account Eqs. (9) and (11), the

augmented cost functional including the soft constraint
can be formulated in the exponentially weighted least

square criteria as:

®,(p)=51%, ~ (P

+HIL(P =P llyp ] (13)

The first term in the right hand side of Eq. (13)

measures the fidelity to the measured data, while the

second term measures the fidelity to the a priori

information. The weighting matrices are selected in

manners that are inversely proportional to each variance.

In general, the variance Ry in Eq. (10) is decaying

as the iterative mNR-type reconstruction algorithm

converges to its real solution. Therefore the weighting

4 .
matrix for the first term XKi need to be increased
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-1 . . ..
compared to O as the iteration number is increased.

To achieve this purpose, we construct the weighting

matrices as follows:

R, = Diag[r,] (€ R**")

(14)

50, = Diag[q,] (€ R™*), (15)
where,

q, = Ba(K—kH), (16)

rk = 1 - qk . (17)

In Eq. (16), a is a scaling factor, BO<B<)) s

forgetting factor, and K is final iteration number.

To find Pk which minimizes the augmented cost
Eq. (13),

functional to zero.

functional set the derivative of the cost

@, (p) =S PV RV, - f(p)]

~L'QL(p" - p;)=0 (18)

The Taylor's series expansion of ®, around Pk is

expressed by

D,(0) =P (p)+D,(P)AP, =0, (19

where,

Apy = Prw — P, (20)

and

@, (p) =L/ (PY R £ (py)
~[f P R, ®F, = FpN+LQ;'L
=[PV R f (p)+L'G;'L @1

where, ® stands for Kronecker matrix product.
Therefore, we can obtain the incremental change in

resistivity variation as:

Ap, = -[(D; (pk )]-l¢z.z (Pk )
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={Lf T R f (p)+ L' Q'LY
AL OT R, = £(p)]
+ Q' L(P" ~ po)} @2)

In the original mNR algorithm, the information

matrix LS '(Pk)]Tf “(P¢) is often ill conditioned because
the ratio of the maximum and minimum eigenvalues of

it is very large. But, conditioning of the matrix inside

{8} in the right hand side of Eq. (22) is improved
significantly, which helps to stabilize the iterative
algorithm. Egs. (20) and (22) constitutes the iterative
update procedure to search the minima of the cost
functional Eq. (13). The update procedure of the
iterative mNR-type algorithm is continued until it
satisfies the stopping performance criterion which is

defined in the RMS(root mean square) sense as:

o, (k)= \FV ST UASCRIPR
v, v, , (23)

where denotes error bound.

Ill. Simulation results and discussions
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Fig. 1(a) FEM meshes
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To illustrate the proposed regularized mNR scheme,
we used the FEM meshes with 128 elements(M=128),
81 nodes(N=81) and 32 channels(¥=32) as shown in
Fig. 1(a). For the true image, we constructed synthetic

data with two targets(background conductivity value=0.05

(Qcm)™ and target conductivity value=0.005 (Qem)”!

so that the contrast ratio is 10:1) as Fig. 1(b).

Fig. 1(b) True image

The inverse problem was solved using both the
proposed scheme and the conventional regularized mNR
to compare the conductivity reconstruction performance.
We injected 15 trigonometric current patterns(P=15) and
assumed that initial conductivity distribution was the
same as background conductivity value. The parameters
used in solving the inverse problem are selected as
follows; The regularization matrices for both algorithms

are set to the same as L=ly regularization pamsmeter

for the conventional regularized mNR s - .1,

scaling factor &¢=0.1 and forgetting factor B=0.98

for the proposed scheme. We selected three cases for
the a priori information P ; (1) without a priori

.
information(that is, P for both targets are equal to the

initial conditions), (2) partial a priori information(that is,
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P’ for left target is set to 20.005 and for right target

is equal to the initial condition), and (3) total a priori

information(that is, P‘ for both targets are set to
1.50.005).

Fig. 2(a) shows the reconstructed image obtained by the
conventional regularized mNR and Figs. 2(b) through (d)
are the reconstructed images obtained by the the
proposed regularized scheme in cases (1) through (3),

respectively after 20 iterations(K=20).

ir

08¢

06}
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Fig. 2(a) Reconstructed image by the conventional

regularized mNR

Fig. 2(b) Reconstructed image by the proposed

scheme without a priori information

As can be seen clearly from these figures, the

Fig. 2(c) Reconstructed image by the proposed

scheme with partial a priori information

Fig. 2(d) Reconstructed image by the proposed

. scheme with total a priori information

proposed regularized scheme has better reconstruction
performance than that of the conventional regularized
mNR even in the case without a priori information. As
can be expected, a priori information is closer to the
real target values, the proposed scheme has better
reconstruction performance. The residual error of the
regularized mNR is 8.0908110-6. In addition, the
residual errors of the proposed scheme in case (1)
through (3) are 1.8355710-6, 8.7354110-8 and 1.22824
10-8, respectively.

Figs. 3(a) and (b) show the convergence of the
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Fig. 3(a) Residual errors in transient period

residual errors for the proposed scheme with partial a
priori information in transient and steady-state period,
respectively for different 8 values. It is noted that large
value of [ has the small reconstruction error in
steady-state. In these simulations, the (G values are

chosen empirically.

IV. Conclusions

In this paper, we developed a novel regularized
mNR scheme for static EIT imaging based on the
exponentially weighted least square criterion. The
rationale for this paper is that the additional
regularization constraint which incorporates a priori
information into the object functional is helpful to
stabilize the mNR reconstruction algorithm only in the
transient convergence period. As the iterative mNR-type
algorithm  converges to its real solution, the
ill-conditioning problem becomes less severe. Therefore,
in the steady state period, it is desirable to discard the
additional constraint to avoid any distortion in final
reconstructed image. To accomplish this purpose,

exponential weighting matrices are employed to the

Iteration Number &

Fig. 3(b) Residual errors in steady-state period
B

objective functional, which are functions of the iteration
number. Computer simulations using FEM with 32
channels and 128 elements are provided and compared
to the conventional regularized mNR algorithm to
illustrate the performance of the proposed algorithm. As
a result, the proposed regularized scheme has better
reconstruction  performance than the conventional
regularized mNR method at the expense of slightly
increased computational burden.

It is supposed that there are many possibilities to
improve the performance of the proposed scheme with
proper choice of the regularization matrix and the results
will be appeared in the sequent paper
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