• Title/Summary/Keyword: induced signal

Search Result 1,788, Processing Time 0.028 seconds

Research on the Correlation of Control Malfunction with Induced Voltage of Control Signal Line According to Voltage Change of a Power Line

  • Kang, Dong-Woo;Kim, In-Gun;Ham, Sang-Hwan;Kim, Sung-Yul;Bae, Sungwoo;Kim, Dae-Nyeon;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.775-780
    • /
    • 2016
  • This induced voltage measurement test and electromagnetic field simulation are related to the possibility of control signal malfunction by power line. Through an experiment, this research analyzed whether the voltage causing control malfunction according to the on/off status of power permitted to power line was induced to control signal line. Also, the research calculated the voltage induced to control signal line and examined the phenomenon by conducting an electro-magnetic field-specific simulation through the finite element method for the cable model used in the experiment.

Measurement of soot concentration in flames using laser-induced incandescence method (레이저 가열 측정법을 이용한 화염 내 매연 농도 측정)

  • Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Laser induced incandescence, LII, recently developed technique for measuring soot concentration in flames, can overcome most of limitations of conventional laser extinction measurement. In this study, experiments were performed to investigate the effect of laser intensity, detection wavelength, and also laser beam quality on both LII signal at a particular position and peak-to-centerline LII signal ratio. The results of LII signal with increasing laser intensity shows its near-independence of laser intensity once threshold level of laser intensity has been reached. However, this near-independence depends on laser beam quality and the incident optical setup. The peak-to-centerline LII signal ratio slowly but continuously increases with laser power. This fact is due to the dependence of LII signal on particle mean diameter. LII signal is attenuated during it passes through the flame containing soot particles. The attenuation rate is inversely proportional to detection wavelength. In this study, LII signal at 680 nm band is 10% greater than the signal at 400 nm band.

  • PDF

Experimental Evaluation of Frequency Characteristics of Gain-saturated EDFA for Suppression of Signal Fluctuation in Terrestrial Free-space Optical Communication Systems

  • Yoo Seok, Jeong;Chul Han, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Frequency characteristics of gain-saturated erbium-doped fiber amplifier (EDFA) are experimentally evaluated to mitigate the optical signal fluctuation induced by atmospheric turbulence in terrestrial freespace optical communication systems. Here, an acousto-optic modulator (AOM) is used to emulate optical signal fluctuations induced by atmospheric turbulence. The waveform which is generated in proportion to the refractive-index structural parameters is used to drive the AOM at various periodic frequencies. Thus, the dependence of the signal fluctuation suppression on the frequency is evaluated. The experiment is conducted using a periodic frequency sweep of the AOM driving voltage waveform and signal input power variation of the amplifier. It is observed that a low periodic frequency and high input signal power effectively suppress the optical signal fluctuation. This study evaluates the experimental results from the high-pass filter and gain-saturation characteristics of the EDFA.

Analysis of Microwave-Induced Thermoacoustic Signal Generation Using Computer Simulation

  • Dewantari, Aulia;Jeon, Se-Yeon;Kim, Seok;Nikitin, Konstantin;Ka, Min-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Computer simulations were conducted to demonstrate the generation of microwave-induced thermoacoustic signal. The simulations began with modelling an object with a biological tissue characteristic and irradiating it with a microwave pulse. The time-varying heating function data at every particular point on the illuminated object were obtained from absorbed electric field data from the simulation result. The thermoacoustic signal received at a point transducer at a particular distance from the object was generated by applying heating function data to the thermoacoustic equation. These simulations can be used as a foundation for understanding how thermoacoustic signal is generated and can be applied as a basis for thermoacoustic imaging simulations and experiments in future research.

Signal Shapes from a Closed-ended Coaxial HPGe Detector

  • Park, H. D.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.451-458
    • /
    • 1997
  • Signal shapes from a closed-ended coaxial HPGe detector are investigated by numerical methods. The detector used in this study has a volume of 72 ㎤ with relative efficiency of 15%. The electric field and potential distributions in the detector are determined by solving the Poisson equation at the depletion and operating bias. Hence the time dependent signal shapes induced on the electrode are obtained from the energy balance consideration and tv solving the equation of motion for the charge carriers. For various initial positions of a charge carrier pair, the collection times of induced charge vary in the range of 70 - 404 nsec.

  • PDF

Retrospective dosimetry using fingernail electron paramagnetic resonance response

  • Noori, Abbas;Mostajaboddavati, Mojtaba;Ziaie, Farhood
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.526-530
    • /
    • 2018
  • Human fingernails were used to estimate the radiation dose via electron paramagnetic resonance measurements of radiation-induced radicals. The limiting factors in this research were mechanically induced electron paramagnetic resonance signals due to the mechanical stress during the preparation of the samples. Therefore, different treatment methods of fingernails were used to reduce the mechanically induced signals. The results demonstrate that the mechanically induced and radiation-induced signals have apparently different microwave power saturation behaviors. In addition, the mechanically induced signal shows a fading evolution over time and reaches a constant value. Chemical treatment using the different reagents showed that the minimum mechanically induced signal was obtained using the dithiothreitol reagent. The dose-response curves of the samples treated with dithiothreitol for 30 minutes demonstrated a greater linearity than those of samples treated for 5 minutes. Therefore, to find an unknown absorbed dose in a fingernail sample using a calibration curve, we recommend adopting the mentioned chemical treatment procedure to reduce the uncertainty.

Combustion Flame Diagnostics Using Laser-Induced Fluorescence (레이저 유도 형광법에 의한 연소화염 진단기법 연구)

  • Kim, T.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.24-29
    • /
    • 1995
  • A laser system and signal aquisition system to use a laser-induced fluorescence technique were arranged to measure NO concentration. To identify the NO fluorescence signal, verification of the fluorescence was performed through use of comparison of the signals taken both in a undoped and doped calibration flames. Finally, the spatial NO number densities in partially premixed flames were found as a function of fuel-tube equivalence ratio(${\phi}_c$) and overall equivalence ratio(${\phi}_o$).

  • PDF

Effects of Signal Peptide and Adenylate on the Oligomerization and Membrane Binding of Soluble SecA

  • Shin, Ji-Yeun;Kim, Mi-Hee;Ahn, Tae-Ho
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.319-328
    • /
    • 2006
  • SecA protein, a cytoplasmic ATPase, plays a central role in the secretion of signal peptide-containing proteins. Here, we examined effects of signal peptide and ATP on the oligomerization, conformational change, and membrane binding of SecA. The wild-type (WT) signal peptide from the ribose-binding protein inhibited ATP binding to soluble SecA and stimulated release of ATP already bound to the protein. The signal peptide enhanced the oligomerization of soluble SecA, while ATP induced dissociation of SecA oligomer. Analysis of SecA unfolding with urea or heat revealed that the WT signal peptide induces an open conformation of soluble SecA, while ATP increased the compactness of SecA. We further obtained evidences that the signal peptide-induced oligomerization and the formation of open structure enhance the membrane binding of SecA, whereas ATP inhibits the interaction of soluble SecA with membranes. On the other hand, the complex of membrane-bound SecA and signal peptide was shown to resume nucleotide-binding activity. From these results, we propose that the translocation components affect the degree of oligomerization of soluble SecA, thereby modulating the membrane binding of SecA in early translocation pathway. A possible sequential interaction of SecA with signal peptide, ATP, and cytoplasmic membrane is discussed.

Effect of Calmodulin on Ginseng Saponin-Induced $Ca^{2+}$-Activated $Cl^{-}$ Channel Activation in Xenopus laevis Oocytes

  • Lee Jun-Ho;Jeong Sang-Min;Lee Byung-Hwan;Kim Jong-Hoon;Ko Sung-Ryong;Kim Seung-Hwan;Lee Sang-Mok;Nah Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.413-420
    • /
    • 2005
  • We previously demonstrated the ability of ginseng saponins (active ingredients of Panax ginseng) to enhance $Ca^{2+}$-activated $Cl^{-}$ current. The mechanism for this ginseng saponin-induced enhancement was proposed to be the release of $Ca^{2+}$ from $IP_{3}-sensitive$ intracellular stores through the activation of PTX-insensitive $G\alpha_{q/11}$ proteins and PLC pathway. Recent studies have shown that calmodulin (CaM) regulates $IP_{3}$ receptor-mediated $Ca^{2+}$ release in both $Ca^{2+}-dependent$ and -independent manner. In the present study, we have investigated the effects of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current responses in Xenopus oocytes. Intraoocyte injection of CaM inhibited ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement, whereas co-injection of calmidazolium, a CaM antagonist, with CaM blocked CaM action. The inhibitory effect of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement was dose- and time-dependent, with an $IC_{50} of 14.9\pm3.5 {\mu}M$. The inhibitory effect of CaM on saponin's activity was maximal after 6 h of intraoocyte injection of CaM, and after 48 h the activity of saponin recovered to control level. The half-recovery time was calculated to be $16.7\pm4.3 h$. Intraoocyte injection of CaM inhibited $Ca^{2+}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement and also attenuated $IP_{3}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. $Ca^{2+}$/CaM kinase II inhibitor did not inhibit CaM-caused attenuation of ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. These results suggest that CaM regulates ginseng saponin effect on $Ca^{2+}$-activated $Cl^{-}$ current enhancement via $Ca^{2+}$-independent manner.

Investigation on the component separation of magnetic signal generated from a ferro-magnetic vessel (함정에서 발생하는 자계신호의 성분분리에 대한 검토)

  • Kim, Young-Hak;Doh, JaeWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2051-2056
    • /
    • 2014
  • This paper investigated the separation of magnetic signal from a ferro-magnetic object. The magnetic signals were ILM(induced longitudinal magnetization) and IVM(induced vertical magnetization), which were induced by earth magnetic field and PLM(permanent longitudinal magnetization) and PVM(permanent vertical magnetization), which were due to a permanent magnetization of the object, respectively. Magnetic signal separation was based on the fact that magnetization vector could be analyzed according to longitudinal and vertical directions. Also the influence of non-uniform magnetic field from a rectangular coil on the separation was examined. A military vessel with a size close to rectangular coil has more errors on the magnetic signal separation.