Browse > Article

Effect of Calmodulin on Ginseng Saponin-Induced $Ca^{2+}$-Activated $Cl^{-}$ Channel Activation in Xenopus laevis Oocytes  

Lee Jun-Ho (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Jeong Sang-Min (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Lee Byung-Hwan (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Kim Jong-Hoon (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Ko Sung-Ryong (KT & G Central Research Institute)
Kim Seung-Hwan (Department of Exercise Science, College of Natural Science, Chungbuk National University)
Lee Sang-Mok (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Nah Seung-Yeol (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Publication Information
Archives of Pharmacal Research / v.28, no.4, 2005 , pp. 413-420 More about this Journal
Abstract
We previously demonstrated the ability of ginseng saponins (active ingredients of Panax ginseng) to enhance $Ca^{2+}$-activated $Cl^{-}$ current. The mechanism for this ginseng saponin-induced enhancement was proposed to be the release of $Ca^{2+}$ from $IP_{3}-sensitive$ intracellular stores through the activation of PTX-insensitive $G\alpha_{q/11}$ proteins and PLC pathway. Recent studies have shown that calmodulin (CaM) regulates $IP_{3}$ receptor-mediated $Ca^{2+}$ release in both $Ca^{2+}-dependent$ and -independent manner. In the present study, we have investigated the effects of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current responses in Xenopus oocytes. Intraoocyte injection of CaM inhibited ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement, whereas co-injection of calmidazolium, a CaM antagonist, with CaM blocked CaM action. The inhibitory effect of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement was dose- and time-dependent, with an $IC_{50} of 14.9\pm3.5 {\mu}M$. The inhibitory effect of CaM on saponin's activity was maximal after 6 h of intraoocyte injection of CaM, and after 48 h the activity of saponin recovered to control level. The half-recovery time was calculated to be $16.7\pm4.3 h$. Intraoocyte injection of CaM inhibited $Ca^{2+}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement and also attenuated $IP_{3}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. $Ca^{2+}$/CaM kinase II inhibitor did not inhibit CaM-caused attenuation of ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. These results suggest that CaM regulates ginseng saponin effect on $Ca^{2+}$-activated $Cl^{-}$ current enhancement via $Ca^{2+}$-independent manner.
Keywords
Panax ginseng; Calmodulin; Xenopus oocytes;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Choi, S., Rho, S. H., Jung, S. Y., Kim, S. C., Park, C. S., and Nah, S. Y., A novel activation of $Ca^{2+}$-activated $Cl^{-}$ channel in Xenopus oocytes by ginseng saponins: evidence for the involvement of phospholipase C and intracellular $Ca^{2+}$ mobilization. Br. J. Pharmacol., 132, 641-648 (2001a)   DOI   ScienceOn
2 Choi, S., Kim, H. J., Ko, Y. S., Jeong, S. W., Kim, Y. I., Simonds, W. F., Oh, J. W., and Nah, S. Y., $G\alpha_{q/11}$ coupled to mammalian phospholipase C b3-like enzyme mediates the ginsenoside effect on $Ca^{2+}$-activated $Cl^-$ current in the Xenopus oocyte. J. Biol. Chem., 276, 48797-48802 (2001b)   DOI   ScienceOn
3 Dascal, N., Yekuel, R., and Oron, Y., Acetylcholine promotes progesterone-induced maturation of Xenopus oocytes. J. Exp. Zool., 230, 131-135 (1984)   DOI   ScienceOn
4 Matifat, F., Fournier, F., Lorca, T., Capony, J. P., Brule, G.., and Collin, T., Involvement of the $Ca^{2+}$/calmodulin protein kinase II pathway in the $Ca^{2+}$-mediated regulation of the capacitative $Ca^{2+}$ entry in Xenopus oocytes. Biochem. J., 322, 267-272 (1997)   DOI
5 Nah, S. Y., Ginseng, recent advances and trend. Korea J. Ginseng Sci., 21, 1-12 (1997)
6 Parekh A. B., Interaction between capacitative $Ca^{2+}$ influx and $Ca^{2+}$-dependent $Cl^-$ currents in Xenopus oocytes. Pflugers Arch-Eur. J. Physiol., 430, 954-963 (1995)   DOI   PUBMED   ScienceOn
7 Sienaert, I., Kasri, N. N., Vanlingen, S. Parys, J. B., Callewaert, G., Messeian, L., and de Smedt, L., Localization and function of a calmodulin/apocalmodulin binding domain in the Nterminal part of the type-1 inositol 1,4,5-trisphosphate receptor. Biochem. J., 365, 269-277 (2002)   DOI   ScienceOn
8 Lechleiter, J. D. and Clapham, D. E., Molecular mechanisms of intracellular calcium excitability in Xenopus laevis oocytes. Cell, 69, 283-294 (1992)   DOI   ScienceOn
9 Adkins, C. E., Morris, S. A., De Smedt, H., Sienaert, I., Torok, K., and Taylor, C. W., $Ca^{2+}$-calmodulin inhibit $Ca^{2+}$ release mediated by type-1, -2, and -3 inositol trisphosphate receptors. Biochem. J., 345, 357-363 (2000)   DOI   ScienceOn
10 Parekh, A. B. and Penner, R., Store depletion and calcium influx. Physiol. Rev., 77, 901-930 (1997)   DOI
11 Yamada, M., Miyawaki, A., Saito, K., Nakajima, M., Yamamoto- Hino, Y., Ryo, T., Furuichi, T., and Mikoshiba, K., The calmodulin-binding domain in the mouse type 1 inositol 1,4,5- trisphosphate receptor. Biochem. J., 308, 83-88 (1995)   DOI
12 Hartzell, H. C., Activation of different $Cl^-$ currents in Xenopus oocytes by Ca liberation from stores and by capacitative Ca Influx. J. Gen. Physiol., 108, 157-175 (1996)   DOI   PUBMED   ScienceOn
13 Jeong, S. M., Lee, J. H., Kim, S., Rhim, H., Lee B. H., Kim, J. H., Oh, J. W., and Lee, S. M., Ginseng saponins induce store-operated calcium entry in Xenopus oocytes. Br. J. Pharmacol., 142, 585-593 (2004)   DOI   ScienceOn
14 Berridge, M. J. and Irvine, R. F., Inositol triphosphates and cell signalling. Nature, 341, 197-205 (1989)   DOI   ScienceOn
15 Berridge, M. J., Bootman, M. D., and Lipp, P., Calcium - a life and death signal. Nature (Lond.), 395, 645-648 (1998)   DOI   ScienceOn
16 Taylor, C. W. and Laude, A. J., $IP_3$ receptors and their regulation by calmodulin and cytosolic $Ca^{2+}$. Cell Calcium, 32, 321-334 (2002)   DOI   ScienceOn
17 Waxham, M. N. and Aronowski, J., $Ca^{2+}$/calmodulin-dependent protein kinase II is phosphorylated by protein kinase C in vitro. Biochemistry, 32, 2923-2930 (1993)   DOI   ScienceOn
18 Fukunaga, K., Miyamoto, E., and Soderling T. R., Regulation of $Ca^{2+/}$calmodulin-dependent protein kinase II by brain gangliosides. J. Neurochem., 54, 103-109 (1990)   DOI
19 Gnegy, M. E., Calmodulin in neurotransmitter and hormone action. Ann. Rev. Pharmacol. Toxicol., 33, 45-70 (1993)   DOI   PUBMED   ScienceOn
20 Missiaen, L., Parys, J. B., Weidema, A. F., Sipma, H., Valingen, S., De Smet, P., Callewaert, G., and De Smedt, H., The bellshaped $Ca^{2+}$ dependence of the inositol 1,4,5-trisphosphateinduced $Ca^{2+}$ release is modulated by $Ca^{2+}$/calmodulin. J. Biol. Chem., 274, 13748-13751 (1999)   DOI   ScienceOn
21 Lee, J. H., Jeong, S. M., Lee, B. H., Kim, D. H., Kim, J. H., Kim, J. I., and Nah, S. Y., Prevention of ginsenoside-induced desensitization of $Ca^{2+}$-activated $Cl^-$ currents by microinjection of inositol hexakisphosphate ($InsP_6$) in Xenopus laevis oocytes: involvement of GRK2 and $\beta-arrestin$ I. J. Biol. Chem., 279, 9912-9921 (2004)   DOI   ScienceOn
22 Cardy, T. J. A. and Taylor, C. W., A novel role for calmodulin: $Ca^{2+}$-independent inhibition of type-1 inositol trisphosphate receptors. Biochem. J., 334, 447-455 (1998)   DOI
23 Parys, J. B., Sernett, S. W., DeLisle, S., Snyder, P. M., Welsh, M. J., and Campbell, K. P., Isolation, characterization, and localization of the inositol 1,4,5-triphosphate receptor protein in Xenopus laevis oocytes. J. Biol. Chem., 267, 18776-18782 (1992)
24 Kuruma, A. and Hartzell, H. C., Dynamics of calcium regulation of chloride currents in Xenopus oocytes. Am. J. Physiol., 276, C161-C175 (1999)   DOI
25 Liu, M., Chen, T. Y., Ahamed, B., Li, J., and Yau, K. W., Calciumcalmodulin modulation of the olfactory cyclic nucleotide gated cation channel. Science, 266, 1348-1354 (1994)   DOI   PUBMED   ScienceOn
26 Kasri, N. N., Bultynck, G., Sienaert, I., Callewaert, G., Erneux, C., Missiaen, L., Pary, J. B., and De Smedt, H., The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. Biochim. Biophys. Acta, 1600, 19-31 (2002)   DOI   ScienceOn