Effect of Calmodulin on Ginseng Saponin-Induced $Ca^{2+}$-Activated $Cl^{-}$ Channel Activation in Xenopus laevis Oocytes

  • Lee Jun-Ho (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Jeong Sang-Min (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Lee Byung-Hwan (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Kim Jong-Hoon (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Ko Sung-Ryong (KT & G Central Research Institute) ;
  • Kim Seung-Hwan (Department of Exercise Science, College of Natural Science, Chungbuk National University) ;
  • Lee Sang-Mok (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Nah Seung-Yeol (Research Laboratory for the Study of Ginseng Signal Transduction and Department of Physiology, College of Veterinary Medicine, Konkuk University)
  • Published : 2005.04.01

Abstract

We previously demonstrated the ability of ginseng saponins (active ingredients of Panax ginseng) to enhance $Ca^{2+}$-activated $Cl^{-}$ current. The mechanism for this ginseng saponin-induced enhancement was proposed to be the release of $Ca^{2+}$ from $IP_{3}-sensitive$ intracellular stores through the activation of PTX-insensitive $G\alpha_{q/11}$ proteins and PLC pathway. Recent studies have shown that calmodulin (CaM) regulates $IP_{3}$ receptor-mediated $Ca^{2+}$ release in both $Ca^{2+}-dependent$ and -independent manner. In the present study, we have investigated the effects of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current responses in Xenopus oocytes. Intraoocyte injection of CaM inhibited ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement, whereas co-injection of calmidazolium, a CaM antagonist, with CaM blocked CaM action. The inhibitory effect of CaM on ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement was dose- and time-dependent, with an $IC_{50} of 14.9\pm3.5 {\mu}M$. The inhibitory effect of CaM on saponin's activity was maximal after 6 h of intraoocyte injection of CaM, and after 48 h the activity of saponin recovered to control level. The half-recovery time was calculated to be $16.7\pm4.3 h$. Intraoocyte injection of CaM inhibited $Ca^{2+}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement and also attenuated $IP_{3}$-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. $Ca^{2+}$/CaM kinase II inhibitor did not inhibit CaM-caused attenuation of ginseng saponin-induced $Ca^{2+}$-activated $Cl^{-}$ current enhancement. These results suggest that CaM regulates ginseng saponin effect on $Ca^{2+}$-activated $Cl^{-}$ current enhancement via $Ca^{2+}$-independent manner.

Keywords

References

  1. Adkins, C. E., Morris, S. A., De Smedt, H., Sienaert, I., Torok, K., and Taylor, C. W., $Ca^{2+}$-calmodulin inhibit $Ca^{2+}$ release mediated by type-1, -2, and -3 inositol trisphosphate receptors. Biochem. J., 345, 357-363 (2000) https://doi.org/10.1042/0264-6021:3450357
  2. Berridge, M. J. and Irvine, R. F., Inositol triphosphates and cell signalling. Nature, 341, 197-205 (1989) https://doi.org/10.1038/341197a0
  3. Berridge, M. J., Bootman, M. D., and Lipp, P., Calcium - a life and death signal. Nature (Lond.), 395, 645-648 (1998) https://doi.org/10.1038/27094
  4. Cardy, T. J. A. and Taylor, C. W., A novel role for calmodulin: $Ca^{2+}$-independent inhibition of type-1 inositol trisphosphate receptors. Biochem. J., 334, 447-455 (1998) https://doi.org/10.1042/bj3340447
  5. Choi, S., Rho, S. H., Jung, S. Y., Kim, S. C., Park, C. S., and Nah, S. Y., A novel activation of $Ca^{2+}$-activated $Cl^{-}$ channel in Xenopus oocytes by ginseng saponins: evidence for the involvement of phospholipase C and intracellular $Ca^{2+}$ mobilization. Br. J. Pharmacol., 132, 641-648 (2001a) https://doi.org/10.1038/sj.bjp.0703856
  6. Choi, S., Kim, H. J., Ko, Y. S., Jeong, S. W., Kim, Y. I., Simonds, W. F., Oh, J. W., and Nah, S. Y., $G\alpha_{q/11}$ coupled to mammalian phospholipase C b3-like enzyme mediates the ginsenoside effect on $Ca^{2+}$-activated $Cl^-$ current in the Xenopus oocyte. J. Biol. Chem., 276, 48797-48802 (2001b) https://doi.org/10.1074/jbc.M104346200
  7. Dascal, N., Yekuel, R., and Oron, Y., Acetylcholine promotes progesterone-induced maturation of Xenopus oocytes. J. Exp. Zool., 230, 131-135 (1984) https://doi.org/10.1002/jez.1402300117
  8. Fukunaga, K., Miyamoto, E., and Soderling T. R., Regulation of $Ca^{2+/}$calmodulin-dependent protein kinase II by brain gangliosides. J. Neurochem., 54, 103-109 (1990) https://doi.org/10.1111/j.1471-4159.1990.tb13288.x
  9. Gnegy, M. E., Calmodulin in neurotransmitter and hormone action. Ann. Rev. Pharmacol. Toxicol., 33, 45-70 (1993) https://doi.org/10.1146/annurev.pa.33.040193.000401
  10. Hartzell, H. C., Activation of different $Cl^-$ currents in Xenopus oocytes by Ca liberation from stores and by capacitative Ca Influx. J. Gen. Physiol., 108, 157-175 (1996) https://doi.org/10.1085/jgp.108.3.157
  11. Jeong, S. M., Lee, J. H., Kim, S., Rhim, H., Lee B. H., Kim, J. H., Oh, J. W., and Lee, S. M., Ginseng saponins induce store-operated calcium entry in Xenopus oocytes. Br. J. Pharmacol., 142, 585-593 (2004) https://doi.org/10.1038/sj.bjp.0705797
  12. Kasri, N. N., Bultynck, G., Sienaert, I., Callewaert, G., Erneux, C., Missiaen, L., Pary, J. B., and De Smedt, H., The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. Biochim. Biophys. Acta, 1600, 19-31 (2002) https://doi.org/10.1016/S1570-9639(02)00440-5
  13. Kuruma, A. and Hartzell, H. C., Dynamics of calcium regulation of chloride currents in Xenopus oocytes. Am. J. Physiol., 276, C161-C175 (1999) https://doi.org/10.1152/ajpcell.1999.276.1.C161
  14. Lechleiter, J. D. and Clapham, D. E., Molecular mechanisms of intracellular calcium excitability in Xenopus laevis oocytes. Cell, 69, 283-294 (1992) https://doi.org/10.1016/0092-8674(92)90409-6
  15. Lee, J. H., Jeong, S. M., Lee, B. H., Kim, D. H., Kim, J. H., Kim, J. I., and Nah, S. Y., Prevention of ginsenoside-induced desensitization of $Ca^{2+}$-activated $Cl^-$ currents by microinjection of inositol hexakisphosphate ($InsP_6$) in Xenopus laevis oocytes: involvement of GRK2 and $\beta-arrestin$ I. J. Biol. Chem., 279, 9912-9921 (2004) https://doi.org/10.1074/jbc.M310824200
  16. Liu, M., Chen, T. Y., Ahamed, B., Li, J., and Yau, K. W., Calciumcalmodulin modulation of the olfactory cyclic nucleotide gated cation channel. Science, 266, 1348-1354 (1994) https://doi.org/10.1126/science.266.5189.1348
  17. Matifat, F., Fournier, F., Lorca, T., Capony, J. P., Brule, G.., and Collin, T., Involvement of the $Ca^{2+}$/calmodulin protein kinase II pathway in the $Ca^{2+}$-mediated regulation of the capacitative $Ca^{2+}$ entry in Xenopus oocytes. Biochem. J., 322, 267-272 (1997) https://doi.org/10.1042/bj3220267
  18. Missiaen, L., Parys, J. B., Weidema, A. F., Sipma, H., Valingen, S., De Smet, P., Callewaert, G., and De Smedt, H., The bellshaped $Ca^{2+}$ dependence of the inositol 1,4,5-trisphosphateinduced $Ca^{2+}$ release is modulated by $Ca^{2+}$/calmodulin. J. Biol. Chem., 274, 13748-13751 (1999) https://doi.org/10.1074/jbc.274.20.13748
  19. Nah, S. Y., Ginseng, recent advances and trend. Korea J. Ginseng Sci., 21, 1-12 (1997)
  20. Parekh A. B., Interaction between capacitative $Ca^{2+}$ influx and $Ca^{2+}$-dependent $Cl^-$ currents in Xenopus oocytes. Pflugers Arch-Eur. J. Physiol., 430, 954-963 (1995) https://doi.org/10.1007/BF01837409
  21. Parekh, A. B. and Penner, R., Store depletion and calcium influx. Physiol. Rev., 77, 901-930 (1997) https://doi.org/10.1152/physrev.1997.77.4.901
  22. Parys, J. B., Sernett, S. W., DeLisle, S., Snyder, P. M., Welsh, M. J., and Campbell, K. P., Isolation, characterization, and localization of the inositol 1,4,5-triphosphate receptor protein in Xenopus laevis oocytes. J. Biol. Chem., 267, 18776-18782 (1992)
  23. Sienaert, I., Kasri, N. N., Vanlingen, S. Parys, J. B., Callewaert, G., Messeian, L., and de Smedt, L., Localization and function of a calmodulin/apocalmodulin binding domain in the Nterminal part of the type-1 inositol 1,4,5-trisphosphate receptor. Biochem. J., 365, 269-277 (2002) https://doi.org/10.1042/BJ20020144
  24. Taylor, C. W. and Laude, A. J., $IP_3$ receptors and their regulation by calmodulin and cytosolic $Ca^{2+}$. Cell Calcium, 32, 321-334 (2002) https://doi.org/10.1016/S0143416002001859
  25. Yamada, M., Miyawaki, A., Saito, K., Nakajima, M., Yamamoto- Hino, Y., Ryo, T., Furuichi, T., and Mikoshiba, K., The calmodulin-binding domain in the mouse type 1 inositol 1,4,5- trisphosphate receptor. Biochem. J., 308, 83-88 (1995) https://doi.org/10.1042/bj3080083
  26. Waxham, M. N. and Aronowski, J., $Ca^{2+}$/calmodulin-dependent protein kinase II is phosphorylated by protein kinase C in vitro. Biochemistry, 32, 2923-2930 (1993) https://doi.org/10.1021/bi00062a024