Browse > Article
http://dx.doi.org/10.5515/JKIEES.2016.16.1.1

Analysis of Microwave-Induced Thermoacoustic Signal Generation Using Computer Simulation  

Dewantari, Aulia (School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University)
Jeon, Se-Yeon (School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University)
Kim, Seok (School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University)
Nikitin, Konstantin (School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University)
Ka, Min-Ho (School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University)
Publication Information
Abstract
Computer simulations were conducted to demonstrate the generation of microwave-induced thermoacoustic signal. The simulations began with modelling an object with a biological tissue characteristic and irradiating it with a microwave pulse. The time-varying heating function data at every particular point on the illuminated object were obtained from absorbed electric field data from the simulation result. The thermoacoustic signal received at a point transducer at a particular distance from the object was generated by applying heating function data to the thermoacoustic equation. These simulations can be used as a foundation for understanding how thermoacoustic signal is generated and can be applied as a basis for thermoacoustic imaging simulations and experiments in future research.
Keywords
Computer Simulation; Heating Function; Microwave-Induced; Thermoacoustic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Xu and L. V. Wang, "Rhesus monkey brain imaging through intact skull with thermoacoustic tomography," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 3, pp. 542-548, Mar. 2006.   DOI
2 B. Guo, J. Li, H. Zmuda, and M. Sheplak, "Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection," IEEE Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 2000-2010, Nov. 2007.   DOI
3 M. Guardiola, S. Capdevila, J. Romeu, and L. Jofre, "3-D microwave magnitude combined tomography for breast cancer detection using realistic breast models," IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1622- 1625, 2012.   DOI
4 N. Simonov, S. I. Jeon, S. H. Son, J. M. Lee, and H. J. Kim,"3D microwave breast imaging based on multistatic radar concept system," Journal of the Korean Institute of Electromagnetic Engineering and Science, vol. 12, no. 1, pp. 107-114, Mar. 2012.   DOI
5 R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz: feasibility study," Radiology, vol. 216, no. 1, pp. 279- 283, Jul. 2000.   DOI
6 R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, "Thermoacoustic CT with radiowaves: a medical imaging paradigm," Radiology, vol. 211, no. 1, pp. 275-278, Apr. 1999.   DOI
7 X. Wang, D. R. Bauer, R. Witte, and H. Xin, "Microwaveinduced thermoacoustic imaging model for potential breast cancer detection," IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2782-2791, Oct. 2012.   DOI
8 H. Nan and A. Arbabian, "Stepped-frequency continuouswave microwave-induced thermoacoustic imaging," Applied Physics Letters, vol. 104, no. 22, article no. 224104, 2014.
9 G. Ku, "Photoacoustic and Thermoacoustic Tomography: System Development for Biomedical Applications," Ph.D. Dissertation, Department of Biomedical Engineering, Texas A&M University, TX, 2004.
10 X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Witte, and H. Xin,"Impact of microwave pulses on thermoacoustic imaging applications," IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1634-1637, Jan. 2012.   DOI
11 V. E. Gusev and A. A. Karabutov, Laser Optoacoustics. New York, NY: American Institute of Physics, 1993.
12 G. J. Diebold, T. Sun, and M. I. Khan, "Photoacoustic monopole radiation in one, two, and three dimensions," Physical Review Letters, vol. 67, no. 24, article no. 3384, Dec. 1991.
13 X. Feng, F. Gao, and Y. Zheng, "Magnetically mediated thermoacoustic imaging toward deeper penetration," Applied Physics Letters, vol. 103, no. 8, article no. 083704, 2013.
14 J. D. Kraus, Antennas. New York, NY: McGraw-Hill, 1988.