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I. INTRODUCTION 

Several kinds of medical devices or systems can be applied for 

imaging purposes. However, the current medical imaging te-

chnologies remain limited in some aspects. For example, only a 

few imaging devices can be considered low cost, safe, accurate, 

and portable. Microwave-based imaging techniques [1-4] have 

been investigated for their capability to provide these aspects. 

These techniques also provide relatively good dielectric contrast 

and non-ionizing radiation. However, due to the large wave-

length, obtaining a fairly good resolution is difficult. Another 

kind of imaging called ultrasound imaging is known to provide 

a good resolution, but it has limited contrast. Therefore, a new 

technique called microwave-induced thermoacoustic imaging 

[5-8], which can combine good contrast from microwave 

imaging and good resolution from ultrasound imaging, was de-

veloped. 

In thermoacoustic imaging, a short-pulsed microwave signal 

is usually applied to irradiate the object to be imaged; in medical 

imaging, the object is human tissue. Some of the microwave 

energy is absorbed by the tissue, and acoustic waves or pressure, 

generally referred to as thermoacoustic waves, are then gene-

rated from the tissue because of thermoelastic expansion [5]. 

The generation of thermoacoustic signal can happen only when 

thermal confinement condition is fulfilled. To fulfill this con-

dition, the pulse length should be very short; in many cases, a 

pulse length within microseconds meets this requirement [9]. 

An acoustic transducer then measures the generated acoustic 

signals, which are collected to form an image. Compared with 

photoacoustic imaging, microwave-induced thermoacoustic ima-

ging has a similar concept but with a different contrast me-

chanism and a larger penetration depth. 

Before conducting thermoacoustic imaging experiments, con-

ducting computational simulation is usually necessary. The rea-
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sons behind this procedure are as follows: 
 

1. To understand the basic idea of thermoacoustic phe-

nomenon. 

2. To predict the the results of the experiments that will be 

conducted. 

3. To verify the effect of changing experiment parameters, 

such as pulse length, pulse shape [10], frequency, etc., 

without conducting real experiments. 
 

This study attempts to explain the generation of thermo-

acoustic signal by conducting computer simulation and im-

plementing thermoacoustic wave equation. Simulation for ob-

taining theheating function data of an irradiated object is first 

conducted.Then,the data are used to implement the thermoa-

coustic equation to obtain the received pressure wave from a 

point transducer at a specific distance from the object. 

Ⅱ. HEATING FUNCTION SIMULATION 

In thermoacoustic, in response to a heat source H(r,t) and 

without considering thermal diffusion and kinematical viscosity, 

the pressure p(r,t) at position r and time t in an acoustically 

homogenous liquid-like medium obeys the following wave 

equation [11, 12]: 
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where p(r,t) is the thermoacoustic pressure at the position r and 

time t, c is the speed of sound, β is the isobaric volume 

expansion coefficient, Cp is the heat capacity, and H(r,t) is the 

heating function defined as the thermal energy deposited by the 

electromagnetic radiation per unit time and per unit volume. 

In general, the solution to Eq. (1) in the time domain can be 

expressed by [9] 
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Fig. 1. Thermoacoustic simulation model. 

H(r,t) can also be described by a specific absorption rate 

(SAR). The SAR is usually adopted as a standard of energy 

absorption rate when tissue is exposed to radio frequency 

radiation and is defined as [7], 
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where |E| is the amplitude of the electric field intensity, σ is the 

conductivity, ρ is the mass density, I(t) is the envelope of the 

instantaneous power of the microwave signal, t is the time, and r 

is the spatial location of a point on the object. 

  To obtain the heating function data, we need the electric field 

data at position r and time t, as shown in Eq. (3). Therefore, a 

simulation is conducted using CST Microwave Studio to obtain 

 

 
Fig. 2. Reflection coefficient of the dipole antenna: (a) in air, (b) in oil, 

(c) in oil, dipole length is changed to match the required fre-

quency, (d) in oil, dipole length is changed to match the re-

quired frequency and improved by impedance matching. 
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the data of the electric field absorbed by the object.  

The thermoacoustic simulation model is shown in Fig. 1. 

The object is a fat (εr=5.44) cylinder with a diameter of 50 mm 

and a height of 20 mm. This cylinder receives electromagnetic 

radiation from an antenna placed 10 mm under the bottom 

surface of the cylinder. The antenna used in this simulation is a 

dipole antenna λ/2.  

Both the cylinder and the antenna are surrounded by oil 

(εr=2.1) as a coupling medium. In the real thermoacoustic ex-

periment, the mechanical wave requires a coupling medium to 

propagate and to be detected by the transducer. 

Fig. 2(a) shows the reflection coefficient for the dipole an-

tenna that works at a frequency of 0.9 GHz. To obtain a good 

reflection coefficient, the impedance at the antenna port is 

matched with the antenna’s radiation impedance. For the dipole 

antenna, the radiation impedance is 168 Ω [13]. In Fig. 2(b), 

the same antenna as in Fig. 2(a) is simulated in oil as coupling 

material. 

In this case, the working frequency is shifted to 0.7 GHz. To 

reobtain the working frequency of 0.9 GHz, the dipole antenna 

length is shortened to 110 mm (previously 168 mm). The result 

of changing the antenna length is shown in Fig. 2(c). In Fig. 

2(d), a better reflection coefficient is obtained by matching the 

port impedance with the antenna’s radiation impedance of 110 

Ω, which is smaller than the previous value as the impedance is 

affected by εr of the coupling material this time. 

The pulsed signal used to irradiate the object has a Gaussian 

envelope modulation. Simulation is conducted using the Gau-

ssian pulse with a 10-MHz bandwidth. The pulse shape and its 

frequency spectrum are shown in Fig. 3. 

  Fig. 4 shows the 3D simulation result after radiating the 

 

 
Fig. 3. Gaussian pulse with a 10 MHz bandwidth (a) and its frequency 

spectrum (b). 

 object with a 10-MHz bandwidth Gaussian pulse. The result 

shows the electric field distribution absorbed by the object. The 

numbers on the upper corner of each picture show the time 

instance in nanoseconds. The brightness shows the intensity of  

the E-field absorbed by the object; a dark color means a low 

intensity of E-field, and a light color means a high intensity of 

E-field. Given the E-field data at position r and time t, we can 

calculate the heating function that is proportional to the squared 

electric field value. 

To observe the shape of the time-varying heating function 

data at any point on the target, a time-varying electric field at 

one particular point on the object is observed (the position of 

that particular point is marked with an x in Fig. 5, as observed 

from the side and top views). Fig. 5 shows that the shape of the 

time-varying heating function data (represented by |E|2) follows 

the shape of the Gaussian envelope of the radiated pulse. 

III. PRESSURE SIGNAL FORMATION 

Eq. (2) can also be written as [14], 
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where |E| is the amplitude of the electric field intensity, σ is the 

conductivity, r is the position of the transducer (where the 

thermoacoustic signal is observed), and r' is the position inside 

the object where microwave is absorbed and acoustic signal is 

generated. 

The term 
ఉ

ସగ஼೛
 is constant, and	ߪሺ࢘ሻ is also constant for an  

object with a uniform material, e.g., fat only. All of the constant 

terms are not included in this part for the sake of simplicity.  

The term 
డ〈|ாሺ࢘ᇱ,௧ᇱሻ|మ〉

డ௧ᇱ
 indicates the first time derivative of the  

squared electric field value at position r'. Note that in this term, 

t' is used instead of t. The term ݐᇱ ൌ ݐ െ
|࢘ି࢘ᇱ|

௖
 shows that for 

positions with different distances |࢘ െ ࢘′| from the transducer, 

the resultant signal will have a different shift 
|࢘ି࢘ᇱ|

௖
. To obtain 

an accurate result, Eq. (4) should be handled by applying 

numerical integration. However, to simplify and roughly 

estimate the resultant pressure signal, one can do a simple 

summation of the generated thermoacoustic pressure in every 

position inside the object. This method is useful and does not 

need any complicated calculation. 

The thermoacoustic signal generated by only one point inside 

the object is shown in Fig. 6. The shape follows the first time 

derivative of the Gaussian envelope. Fig. 7 shows an example to 

describe the summation of the thermoacoustic signals from 

three points inside the object with different shifts (i.e., different 

distances to the transducer). The total signal after summation is 

represented by the solid line. 
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Fig. 5. Time-varying |E|2 at one point for Gaussian excitation signal 

with bandwidth of 10 MHz. 

 

 
Fig. 6. Thermoacoustic signal from one point inside the object.  

 

 

 

 
Fig. 7. Thermoacoustic signals from three different points inside the 

object (dotted lines) and their summation result (solid line). 

 

Another simulation is conducted using the same setting with 

previous heating function simulations, but this time the irra-

diated object is a small sphere with a 1 mm diameter. The po- 

int transducer is assumed to be placed 25 mm from the ob-  

ject.  

The generated thermoacoustic signal from the fat sphere 

object, observed from a point transducer placed 25 mm from the 

object, is shown in Fig. 8. The shape shows two peaks, one 

positive peak and one negative peak, corresponding with the 

shape of the first time derivative of the Gaussian envelope.  

IV. CONCLUSION 

Computer simulations are conducted to obtain absorbed 

electric field data. Heating function data are then calculated 

using the provided electric field data. The thermoacoustic signal  

 
Fig. 4. 3D time-varying simulation result of the absorbed electric field distribution on the irradiated object (the numbers on the upper corner of 

each picture show the time instance in nanoseconds).
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Fig. 8. Thermoacoustic signal from a 1-mm diameter fat sphere (a) and 

its simulation setup (b). 

 

received at a point transducer with a specified distance from the 

object is calculated by incorporating the heating function data 

into a thermoacoustic equation. The integration part is sim-

plified by performing a summation of the individual thermo-

acoustic signals from all points inside the object. 

The shape of the time-varying heating function data follows 

the envelope of a Gaussian pulse used in excitation. The shape 

of the thermoacoustic signal follows the first time derivative of 

the Gaussian pulse envelope.  

The simulations conducted provide the simplest explanation 

to the thermoacoustic phenomenon applied on thermoacoustic 

systems. Understanding the basic concept of thermoacoustic is 

the first step to implement it into more complex simulations 

and real experiments. 

Future research to be developed will be related to the app-

lication of the thermoacoustic phenomenon to imaging, in-

cluding the comparison between thermoacoustic imaging and 

other imaging methods such as ultrasound and conventional 

microwave imaging. In future experiments, the specification and 

sensitivity of the transducer will be provided to prove the fea-

sibility of applying this approach to imaging.   
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