• Title/Summary/Keyword: indium gallium zinc oxide (IGZO)

Search Result 80, Processing Time 0.031 seconds

Study on the change of performance of a-IGZO TFTs depending on processing parameters

  • Jeong, Yu-Jin;Jo, Gyeong-Cheol;Lee, Jae-Sang;Lee, Sang-Ryeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.8-8
    • /
    • 2009
  • Thin-film transistors (TFTs) were fabricated using amorphous indium gallium zinc oxide (a-IGZO) channels by rf-magnetron sputtering at room temperature. We have studied the effect of oxygen partial pressure on the threshold voltage($V_{th}$) of a-IGZO TFTs. Interestingly, the $V_{th}$ value of the oxide TFTs are slightly shifted in the positive direction due to increasing $O_2$ ratio from 1.2 to 1.8%. The device performance is significantly affected by varying $O_2$ ratio, which is closely related with oxygen vacancies provide the needed free carriers for electrical conduction.

  • PDF

Laser Direct Etching on Transparent Conductive Oxide Films Sputtered on Polycarbonate Substrates (PC 기판상에 스퍼터링된 투명전도 산화막의 레이저 식각 특성)

  • Lee, Jeongmin;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.146-150
    • /
    • 2014
  • As a method of simple patterning of transparent conductive oxide (TCO) films deposited on flexible substrates, laser direct etching was carried out on TCO films sputtered on polycarbonate (PC) substrates. As a result of different binding energies in TCO films, indium tin oxide (ITO) and indium gallium zinc oxide (IGZO) were more easily etched than zinc oxide with different $Nd:YVO_4$ laser beam conditions.

Effect of oxygen on the threshold voltage of a-IGZO TFT

  • Chong, Eu-Gene;Chun, Yoon-Soo;Kim, Seung-Han;Lee, Sang-Yeol
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.539-542
    • /
    • 2011
  • Thin-film transistors (TFTs) are fabricated using an amorphous indium gallium zinc oxide (a-IGZO) channel layer by rf-magnetron sputtering. Oxygen partial pressure significantly changed the transfer characteristics of a-IGZO TFTs. Measurements performed on a-IGZO TFT show the change of threshold voltage in the transistor channel layer and electrical properties with varying $O_2$ ratios. The device performance is significantly affected by adjusting the $O_2$ ratio. This ratio is closely related with the modulation generation by reducing the localized trapping carriers and defect centers at the interface or in the channel layer.

Change in the Energy Band Gap and Transmittance IGZO, ZnO, AZO OMO Structure According to Ag Thickness (IGZO, ZnO, AZO OMO 구조의 Ag두께 변화에 따른 투과율과 에너지 밴드 갭의 변화)

  • Lee, Seung-Min;Kim, Hong-Bae;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.185-190
    • /
    • 2015
  • In this study, we fabricated the indium gallium zinc oxide (IGZO), zinc oxide (ZnO), aluminum zinc oxide (AZO). oxide and silver are deposited by magnetron sputtering and thermal evaporator, respectively transparency and energy bandgap were changed by the thickness of silver layer. To fabricate metal oxide metal (OMO) structure, IGZO sputtered on a corning 1,737 glass substrate was used as bottom oxide material and then silver was evaporated on the IGZO layer, finally IGZO was sputtered on the silver layer we get the final OMO structure. The radio-frequency power of the target was fixed at 30 W. The chamber pressure was set to $6.0{\times}10^{-3}$ Torr, and the gas ratio of Ar was fixed at 25 sccm. The silver thickness are varied from 3 to 15 nm. The OMO thin films was analyzed using XRD. XRD shows broad peak which clearly indicates amorphous phase. ZnO, AZO, OMO show the peak [002] direction at $34^{\circ}$. This indicate that ZnO, AZO OMO structure show the crystalline peak. Average transmittance of visible region was over 75%, while that of infrared region was under 20%. Energy band gap of OMO layer was increased with increasing thickness of Ag layer. As a result total transmittance was decreased.

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

Development of IGZO TFTs and Their Applications to Next-Generation Flat-Panel Displays

  • Hsieh, Hsing-Hung;Lu, Hsiung-Hsing;Ting, Hung-Che;Chuang, Ching-Sang;Chen, Chia-Yu;Lin, Yusin
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.160-164
    • /
    • 2010
  • Organic light-emitting devices (OLEDs) have shown superior characteristics and are expected to dominate the nextgeneration flat-panel displays. Active-matrix organic light-emitting diode (AMOLED) displays, however, have stringent demands on the performance of the backplane. In this paper, the development of thin-film transistors (TFTs) based on indium gallium zinc oxide (IGZO) on both Gen 1 and 6 glasses, and their decent characteristics, which meet the AMOLED requirements, are shown. Further, several display prototypes (e.g., 2.4" AMOLED, 2.4" transparent AMOLED, and 32" AMLCD) using IGZO TFTs are demonstrated to confirm that they can indeed be strong candidates for the next-generation TFT technology not only of AMOLED but also of AMLCD (active-matrix liquid crystal display).

Crystallization of IGZO thin film with spontaneously formed superlattice structure induced by Zno buffer layer (Zno 버퍼층을 이용한 자발적 초격자구조를 갖는 IGZO 박막의 결정화)

  • Seo, Dong-Kyu;Kong, Bo-Hyun;Cho, Hyoung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.4-4
    • /
    • 2010
  • Single-crystalline IGZO (Indium-Gallium-Zinc oxide) was fabricated on c-sapphire substrate. Single crystal ZnO was used as a buffer layer, and post-annealing was treated in $900^{\circ}C$ for crystallization of IGZO. Crystallized IGZO formed superlattice structure spontaneously induced to c-axis direction by ZnO butTer layer, the composition of IGZO was varied by amount of ZnO. Crystallinity and composition of IGZO was analyzed by X-ray Diffraction and Transmission Electron Microscopy.

  • PDF

Anomalous Stress-Induced Hump Effects in Amorphous Indium Gallium Zinc Oxide TFTs

  • Kim, Yu-Mi;Jeong, Kwang-Seok;Yun, Ho-Jin;Yang, Seung-Dong;Lee, Sang-Youl;Lee, Hi-Deok;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.47-49
    • /
    • 2012
  • In this paper, we investigated the anomalous hump in the bottom gate staggered a-IGZO TFTs. During the positive bias stress, a positive threshold voltage shift was observed in the transfer curve and an anomalous hump occurred as the stress time increased. The hump became more serious in higher gate bias stress while it was not observed under the negative bias stress. The analysis of constant gate bias stress indicated that the anomalous hump was influenced by the migration of positively charged mobile interstitial zinc ion towards the top side of the a-IGZO channel layer.

용액 공정 기반 ZrO2 절연막을 사용한 IGZO 박막 트랜지스터의 전기적 특성 향상 연구

  • Lee, Na-Yeong;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.215.1-215.1
    • /
    • 2015
  • 본 연구에서는 용액 공정 기반 ZrO2 절연막의 우수한 특성을 확인하기 위해 SiO2 절연막을 가지는 IGZO (Indium-Gallium-Zinc Oxide) 박막 트랜지스터와 비교했다. In:Ga:Zn=1:1:1의 비율의 0.3 M IGZO 용액과 0.2 M ZrO2용액을 사용하였다. ZrO2 박막 트랜지스터는 0.2M ZrO2 용액을 5번 반복 증착하며 140nm 두께의 ZrO2 절연막을 가지는 IGZO 박막 트랜지스터와 비교대상으로 동일한 두께의 SiO2의 절연막을 가지는 IGZO 박막 트랜지스터를 제작하였다. ZrO2 박막 트랜지스터의 문턱전압은 4.3V로 SiO2 박막 트랜지스터의 -6.1V보다 낮았고, 이동도는 $1.2356cm^2/V{\cdot}s$$0.0554cm^2/V{\cdot}s$ 보다 약 20배 높았다. 실험 결과를 통해 ZrO2를 절연막으로 사용한 박막 트랜지스터의 특성이 더 향상되었음을 확인하였다.

  • PDF

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • Kim, Yeon-Sang;Park, Si-Yun;Kim, Gyeong-Jun;Im, Geon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF