Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.3.185

Change in the Energy Band Gap and Transmittance IGZO, ZnO, AZO OMO Structure According to Ag Thickness  

Lee, Seung-Min (Electronics Engineering, Cheongju University)
Kim, Hong-Bae (Semiconductor Engineering, Cheongju University)
Lee, Sang-Yeol (Semiconductor Engineering, Cheongju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.3, 2015 , pp. 185-190 More about this Journal
Abstract
In this study, we fabricated the indium gallium zinc oxide (IGZO), zinc oxide (ZnO), aluminum zinc oxide (AZO). oxide and silver are deposited by magnetron sputtering and thermal evaporator, respectively transparency and energy bandgap were changed by the thickness of silver layer. To fabricate metal oxide metal (OMO) structure, IGZO sputtered on a corning 1,737 glass substrate was used as bottom oxide material and then silver was evaporated on the IGZO layer, finally IGZO was sputtered on the silver layer we get the final OMO structure. The radio-frequency power of the target was fixed at 30 W. The chamber pressure was set to $6.0{\times}10^{-3}$ Torr, and the gas ratio of Ar was fixed at 25 sccm. The silver thickness are varied from 3 to 15 nm. The OMO thin films was analyzed using XRD. XRD shows broad peak which clearly indicates amorphous phase. ZnO, AZO, OMO show the peak [002] direction at $34^{\circ}$. This indicate that ZnO, AZO OMO structure show the crystalline peak. Average transmittance of visible region was over 75%, while that of infrared region was under 20%. Energy band gap of OMO layer was increased with increasing thickness of Ag layer. As a result total transmittance was decreased.
Keywords
IGZO; ZnO; AZO; RF magnetron sputtering; Ag thickness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Mohamed, Journal of Physics and Chemistry of Solids, 69, 2378 (2008).   DOI   ScienceOn
2 R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys., 82, 733 (2003).
3 J. F. Wager, Science, 300, 1245 (2003).   DOI   ScienceOn
4 W. T. Lim, S. H. Kim, Y. L. Wang, J. W. Lee, D. P. Norton, and S. J. Pearton, J. Vac. Sci. Technol. B, 26 (2008).
5 S. Y. Kuo, K. C. Liu, F. I. Lai, J. F. Yang, W. C. Chen, M. Y. Hsieh, H. I. Lin, and W. T. Lin, Microelectron. Reliab., 50, 730 (2010).   DOI
6 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004).   DOI
7 H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys., 89, 112123 (2006).
8 K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, Physical Review B, 75, 035212 (2007).   DOI
9 T. Iwasaki, H. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett., 90, 242114 (2007).   DOI
10 H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Thin Solid Films, 516, 1516 (2008).   DOI
11 N. Itagaki, T. Iwasaki, H. Kumomi, T. Den, K. Nomura, T. Kamiya, and H. Hosono, Phys. Stat. Sol., 205, 1915 (2008).   DOI
12 H. Hosono, Journal of Non-Crystalline Solids, 352, 851 (2006).   DOI
13 A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J.F. Muth, Thin Solid Films, 516, 1326 (2008).   DOI
14 X. Chen, W. Guan, G. Fang, and X. Z. Zhao, Appl. Surf. Sci., 252, 1561 (2005).   DOI