• 제목/요약/키워드: incompressible Navier-Stokes equations

검색결과 292건 처리시간 0.022초

GPU를 이용한 효율적인 비압축성 자유표면유동 해석 (AN EFFICIENT INCOMPRESSIBLE FREE SURFACE FLOW SIMULATION USING GPU)

  • 홍환의;안형택;명훈주
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.35-41
    • /
    • 2012
  • This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.

REGULARITY OF SOLUTIONS OF 3D NAVIER-STOKES EQUATIONS IN A LIPSCHITZ DOMAIN FOR SMALL DATA

  • Jeong, Hyo Suk;Kim, Namkwon;Kwak, Minkyu
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.753-760
    • /
    • 2013
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a bounded Lipschitz do-main under Dirichlet boundary condition. We present by a very simple argument that a strong solution exists globally when the product of $L^2$ norms of the initial velocity and the gradient of the initial velocity and $L^{p,2}$, $p{\geq}4$ norm of the forcing function are small enough. Our condition is scale invariant and implies many typical known global existence results for small initial data including the sharp dependence of the bound on the volumn of the domain and viscosity. We also present a similar result in the whole domain with slightly stronger condition for the forcing.

GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATIONS IN A THIN PERIODIC DOMAIN

  • Kwak, Min-Kyu;Kim, Nam-Kwon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권2호
    • /
    • pp.143-150
    • /
    • 2011
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a thin periodic domain. We present a simple proof that a strong solution exists globally in time when the initial velocity in $H^1$ and the forcing function in $L^p$(0,${\infty}$;$L^2$), $2{\leq}p{\leq}{\infty}$ satisfy certain condition. This condition is basically similar to that by Iftimie and Raugel[7], which covers larger and larger initial data and forcing functions as the thickness of the domain ${\epsilon}$ tends to zero.

GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATIONS IN A LONG PERIODIC DOMAIN

  • Kim, Nam-Kwon;Kwak, Min-Kyu
    • 대한수학회지
    • /
    • 제49권2호
    • /
    • pp.315-324
    • /
    • 2012
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a long periodic domain. We show by a simple argument that a strong solution exists globally in time when the initial velocity in $H^1$ and the forcing function in $L^p$([0; T);$L^2$), T > 0, $2{\leq}p{\leq}+\infty$ satisfy a certain condition. This condition common appears for the global existence in thin non-periodic domains. Larger and larger initial data and forcing functions satisfy this condition as the thickness of the domain $\epsilon$ tends to zero.

A BOUNDARY CONTROL PROBLEM FOR VORTICITY MINIMIZATION IN TIME-DEPENDENT 2D NAVIER-STOKES EQUATIONS

  • KIM, HONGCHUL
    • Korean Journal of Mathematics
    • /
    • 제23권2호
    • /
    • pp.293-312
    • /
    • 2015
  • We deal with a boundary control problem for the vorticity minimization, in which the ow is governed by the time-dependent two dimensional incompressible Navier-Stokes equations. We derive a mathematical formulation and a process for an appropriate control along the portion of the boundary to minimize the vorticity motion due to the ow in the fluid domain. After showing the existence of an optimal solution, we derive the optimality system for which optimal solutions may be determined. The differentiability of the state solution in regard to the control parameter shall be conjunct with the necessary conditions for the optimal solutions.

A CLASSIFICATION OF THE SECOND ORDER PROJECTION METHODS TO SOLVE THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • 제22권4호
    • /
    • pp.645-658
    • /
    • 2014
  • Many projection methods have been progressively constructed to find more accurate and efficient solution of the Navier-Stokes equations. In this paper, we consider most recently constructed projection methods: the pressure correction method, the gauge method, the consistent splitting method, the Gauge-Uzawa method, and the stabilized Gauge-Uzawa method. Each method has different background and theoretical proof. We prove equivalentness of the pressure correction method and the stabilized Gauge-Uzawa method. Also we will obtain that the Gauge-Uzawa method is equivalent to the gauge method and the consistent splitting method. We gather theoretical results of them and conclude that the results are also valid on other equivalent methods.

A STABILITY RESULT FOR THE COMPRESSIBLE STOKES EQUATIONS USING DISCONTINUOUS PRESSURE

  • Kweon, Jae-Ryong
    • 대한수학회지
    • /
    • 제36권1호
    • /
    • pp.159-171
    • /
    • 1999
  • We formulate and study a finite element method for a linearized steady state, compressible, viscous Navier-Stokes equations in 2D, based on the discontinuous Galerkin method. Dislike the standard discontinuous galerkin method, we do not assume that the triangle sides be bounded away from the characteristic direction. the unique stability follows from the inf-sup condition established on the finite dimensional spaces for the (incompressible) Stokes problem. An error analysis having a jump discontinuity for pressure is shown.

  • PDF

가압축성 기법을 이용한 비정렬 격자상에서의 비압축성 점성해석 (Incompressible Viscous Analysis on Unstructured Meshes using Artificial Compressibility Method)

  • 문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.113-117
    • /
    • 1995
  • Viscous analysis on incompressible flows is performed using unstructured triangular meshes. A two-dimensional and axisymmetric incompressible Navier-Stokes equations are solved in time-marching form by artificial compressibility method. The governing equations are discretized by a cell-centered based finite-volume method. and a centered scheme is used for inviscid and viscous fluxes with fourth order artificial dissipation. An explicit multi-stage Runge-Kutta method is used for the time integration with local time stepping and implicit residual smoothing. Convergence properties are examined and solution accuracies are also validated with benchmark solution and experiment.

  • PDF

P2P1/P1P1 유한요소 공식을 이용한 비압축성 Navier-Stokes 방정식의 분리 해법에 대한 연구 (STUDY ON THE SPLITTING ALGORITHMSOF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS USING P1P1/P2P1 FINITE ELEMENT FORMULATION)

  • 조명환;최형권;유정열;박재인
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.117-124
    • /
    • 2005
  • Splitting algorithms of the incompressible Navier-Stokes equations using P1P1/P2P1 finite element formulation are newly proposed. P1P1 formulation allocates velocity and pressure at the same nodes, while P2P1 formulation allocates pressure only at the vertex nodes and velocity at both the vertex and mid nodes. For comparison of the elapsed time and accuracy of the two methods, they have been applied to the well-known benchmark problems. The three cases chosen are the two-dimensional steady and unsteady flows around a fixed cylinder, decaying vortex, and impinging slot jet. It is shown that the proposed P2P1 semi-splitting method performs better than the conventional P1P1 splitting method in terms of both accuracy and computation time.

  • PDF

비정렬격자 압력기준 유동해석기법을 이용한 정상 및 비정상 유동해석 (Steady and Unsteady flows with Pressure-based Unstructured-grid Navier-Stokes Solver PUNS)

  • 김종태
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.98-105
    • /
    • 1999
  • The Pressure-based Unstructured-grid Navier-Stokes Solver PUNS-2/3D for incompressible steady and unsteady viscous flows has been developed. It is based on nonstaggered cell-centered finite volume method. Second-order upwind scheme with least-square reconstruction is used for convective fluxes. The SIMPLE method is implemented to couple the pressure and velocity fields. And the time derivatives in the momentum equations are discretised using a second-order Euler backward-differencing scheme. The discretised linear equations are solved by the preconditioned Biconjugate Gradient Stabilized method(Bi-CGSTAB). The developed solver is applied to validation problems using hybrid meshes.

  • PDF