• Title/Summary/Keyword: in-situ field deposition

Search Result 32, Processing Time 0.027 seconds

Fabrication and Electromagnetic Properties of $Ni_{81}$$Fe_{19}$ Thin Films ($Ni_{81}$$Fe_{19}$ 박막의 제조와 전자기특성)

  • 이원재;백성관;민복기;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1032-1038
    • /
    • 2000
  • Ni$_{81}$$Fe_{19}$(200 nm) thin films have been deposited by RF-magnetron sputtering on Si(001) substrates, Atomic force microscopy(AFM), X-ray diffraction(XRD) and magnetoresistance(MR) measurements of the thin films for investigating electromagnetic properties and microstructures were employed. During field annelaing for 1hr, there was no big difference n XRD patterns of Ni$_{81}$$Fe_{19}$ thin films. However, there was a significant change in XRD patterns of Ni$_{81}$$Fe_{19}$ thin films deposited at 40$0^{\circ}C$ during in-situ magnetic field deposition. The degree of surface roughness increased with increasing annealing and deposition temperature. With variation of surface roughness, there was no significant difference in MR Characteristics of Ni$_{18}$ $Fe_{19}$ thin films in 1hr-annealed case. High MR ratio was observed in the case of in-situ field deposited Ni$_{81}$$Fe_{19}$ films. 19/ films.

  • PDF

In-situ TEM of Carbon Nanotube Field Emitters and Improvement of Electron Emission from Nanotube Films by Laser Treatment

  • Saito, Yahachi;Seko, Kazuyuki;Kinoshita, Jun-ichi;Ishida, Toshiyuki;Yotani, Junko;Kurachi, Hiroyuki;Uemura, Sashiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1081-1086
    • /
    • 2005
  • Dynamic behavior of carbon nanotubes (CNTs) in an electric field is directly observed by in-situ transmission electron microscopy (TEM). The CNT field emitters examined by in-situ TEM are multiwalled, double-walled and single walled CNTs. Threshold fields for electron emission and sustainable emission currents depending on the structure of CNTs are presented, and degradation mechanism of the CNT field emitters is discussed. In addition to the microscopy studies on individual CNTs, our recent development in surface treatment of CNT layers grown by chemical vapor deposition, which brings about high density of emission current and high uniformity, is also presented.

  • PDF

Magnetoresistance changes of sputtered NiFe thin films with deposition temperatures (NiFe 박막의 증착온도에 따른 MR 특성)

  • 이원재;백성관;민복기;송재성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.355-358
    • /
    • 2000
  • Magnetoresistance changes of NiFe thin films were investigated as a function of deposition temperature. DC magnetron sputtering was employed to fabricate Ta/NiFe(t)/Ta thin films on Si(001) substrates with in-situ field or with no-field. The thickness(t) of NiFe films was a range of 4 to 15nm. Substrate temperature was a range of 30 to 400$^{\circ}C$. MR measurement was carried out as a function of angle $\theta$, between external field and current direction. MR ratio increased with increasing substrate temperature, also, max. MR ratio was observed in samples deposited at 300$^{\circ}C$. With increasing upto 400$^{\circ}C$, MR ratio was rapidly decreased in the case of thinner NiFe films. In non-field deposited NiFe films, both angle $\theta$=0, 90。, there was no significant change in MR curves. However, MR curves of in-situ field deposited NiFe films were different in both angles $\theta$=0 and 90。

  • PDF

Improved Electrical Properties by In Situ Nitrogen Incorporation during Atomic Layer Deposition of HfO2 on Ge Substrate (Ge 기판 위에 HfO2 게이트 산화물의 원자층 증착 중 In Situ 질소 혼입에 의한 전기적 특성 변화)

  • Kim, Woo-Hee;Kim, Bum-Soo;Kim, Hyung-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Ge is one of the attractive channel materials for the next generation high speed metal oxide semiconductor field effect transistors (MOSFETs) due to its higher carrier mobility than Si. But the absence of a chemically stable thermal oxide has been the main obstacle hindering the use of Ge channels in MOS devices. Especially, the fabrication of gate oxide on Ge with high quality interface is essential requirement. In this study, $HfO_xN_y$ thin films were prepared by plasma-enhanced atomic layer deposition on Ge substrate. The nitrogen was incorporated in situ during PE-ALD by using the mixture of nitrogen and oxygen plasma as a reactant. The effects of nitrogen to oxygen gas ratio were studied focusing on the improvements on the electrical and interface properties. When the nitrogen to oxygen gas flow ratio was 1, we obtained good quality with 10% EOT reduction. Additional analysis techniques including X-ray photoemission spectroscopy and high resolution transmission electron microscopy were used for chemical and microstructural analysis.

Enhancement of the ferroelectric properties of $Pb(Zr,Ti)O_3$ thin films with $Pb(La,Ti)O_3$ buffers fabricated by pulsed laser deposition (PLT buffer층의 삽입에 따른 강유전 PZT박막의 특성 향상)

  • Lim, Sung-Hoon;Lee, Eun-Sun;Chung, Hyun-Woo;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.67-69
    • /
    • 2004
  • The $Pb(Zr,Ti)O_3$ thin films were fabricated with $Pb(La,Ti)O_3$ buffers in-situ onto $Pt/Ti/SiO_2/Si$ substrates by pulsed laser deposition technique using a Nd:YAG laser with energy density of $2.5J/cm^2$, and deposited for 10 minutes at $550^{\circ}C$ of substrate temperature. And then, the films have been annealed at $550^{\circ}C$ in oxygen ambient pressure. The remanent polarization value is increased by using buffer layers but coercive field of films is slightly increased.

  • PDF

Enhancement of the Ferroelectric Properties of Pb(La1Ti)O3 Thin Films with Pb(La1Ti)O3Buffers Fabricated by Pulsed Laser Deposition (PLT buffer층의 삽입에 따른 강유전 PZT박막의 특성 향상)

  • Lim, Sung-Hoon;Lee, Eun-Sun;Chung, Hyun-Woo;Jeon, Kyung-Ah;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.105-108
    • /
    • 2005
  • The Pb(Zr,Ti)O$_3$ thin films were fabricated with Pb(La,Ti)O$_3$ buffers in-situ onto Pt/Ti/SiO$_2$/Si substrates by pulsed laser deposition method. We have observed the increase of the remanent polarization using PLT buffers. The remanent polarization value of 33.4 $\mu$C/$\textrm{cm}^2$ and the coercive field value of 66.4 kV/cm were obtained when the PLT tufter was deposited for 15 seconds. Enhancement of the polarization is resulted from the enhanced orientation of PZT thin film because of the PLT buffet layer.

Expanding Thermal Plasma CVD of Silicon Thin Films and Nano-Crystals: Fundamental Studies and Applications

  • Sanden, Richard Van De
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.78-78
    • /
    • 2012
  • In this presentation I will review the expanding thermal plasma chemical vapour deposition (ETP-CVD) technology, a deposition technology capable of reaching ultrahigh deposition rates. High rate deposition of a-Si:H, ${\mu}c$-Si:H, a-SiNx:H and silicon nanocrystals will be discussed and their various applications, mainly for photovoltaic applications demonstrated. An important aspect over the years has been the fundamental investigation of the growth mechanism of these films. The various in situ (plasma) and thin film diagnostics, such as Langmuir probes, retarding field analyzer, (appearance potential) mass spectrometry and cavity ring absorption spectroscopy, spectroscopic ellipsometry to name a few, which were successfully applied to measure radical and ion density, their temperature and kinetic energy and their reactivity with the growth surface. The insights gained in the growth mechanism provided routes to novel applications of the ETP-CVD technology, such as the ultrahigh high growth rate of silicon nanorystals and surface passivation of c-Si surfaces.

  • PDF

Silicon field emission arrays coated with a $CoSi_2$ layer grown by reactive chemical vapor deposition

  • Han, Byung-Wook;Rhee, Hwa-Sung;Ahn, Byung-Tae;Lee, Nam-Yang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.131-132
    • /
    • 2000
  • We prepared Si emitters coated with a MOCVD $CoSi_2$ layer to improve the emission properties. The $CoSi_2$ layer was grown on Si field emitters in situ by reactive chemical-vapor deposition of cyclopentadienyl dicarbonyl cobalt at 600 ${\sim}$ $650^{\circ}C$. The $CoSi_2$ coated field emitters showed enhanced emission properties of current-voltage characteristics, which were due to the increase of emitting area from Fowler-Nordheim plot. And the emission current fluctuation decreased due to the chemically stable surface properties of $CoSi_2$.

  • PDF

Study on the Characteristics of Organic TFT Using Organic Insulating Layer Efficiency (유기 절연층에 따른 유기 TFT 특성 연구)

  • Pyo, Sang-Woo;Lee, Min-Woo;Sohn, Byung-Chung;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.335-338
    • /
    • 2002
  • A new process for polymeric gate insulator in field-effect transistors was proposed. Fourier transform infrared absorption spectra were measured in order to identify ODPA-ODA polyimide. Its breakdown field and electrical conductivity were measured. All-organic thin-film transistors with a stacked-inverted top-contact structure were fabricated to demonstrate that thermally evaporated polyimide films could be used as a gate insulator. As a result, the transistor performances with evaporated polyimide was similar with spin-coated polyimide. It seems that the mass-productive in-situ solution-free processes for all-organic thin-film transistors are possible by using the proposed method without vacuum breaking.

Fabrication of Organic Thin-Film Transistor Using Vapor Deposition Polymerization Method (Vapor Deposition Polymerization 방법을 이용한 유기 박막 트렌지스터의 제작)

  • 표상우;김준호;김정수;심재훈;김영관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.190-193
    • /
    • 2002
  • The processing technology of organic thin-film transistors (Ons) performances have improved fur the last decade. Gate insulator layer has generally used inorganic layer, such as silicon oxide which has properties of a low electrical conductivity and a high breakdown field. However, inorganic insulating layers, which are formed at high temperature, may affect other layers termed on a substrate through preceding processes. On the other hand, organic insulating layers, which are formed at low temperature, dose not affect pre-process. Known wet-processing methods for fabricating organic insulating layers include a spin coating, dipping and Langmuir-Blodgett film processes. In this paper, we propose the new dry-processing method of organic gate dielectric film in field-effect transistors. Vapor deposition polymerization (VDP) that is mainly used to the conducting polymers is introduced to form the gate dielectric. This method is appropriate to mass production in various end-user applications, for example, flat panel displays, because it has the advantages of shadow mask patterning and in-situ dry process with flexible low-cost large area displays. Also we fabricated four by four active pixels with all-organic thin-film transistors and phosphorescent organic light emitting devices.

  • PDF