• Title/Summary/Keyword: in situ spectroscopy

Search Result 271, Processing Time 0.026 seconds

In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy

  • Lee, So-Yeong;Jang, Soo-Hwa;Cho, Myung-Haing;Kim, Young-Min;Cho, Keun-Chang;Ryu, Pan Dong;Gong, Myoung-Seon;Joo, Sang-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.904-910
    • /
    • 2009
  • The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.

Improved Electrical Properties by In Situ Nitrogen Incorporation during Atomic Layer Deposition of HfO2 on Ge Substrate (Ge 기판 위에 HfO2 게이트 산화물의 원자층 증착 중 In Situ 질소 혼입에 의한 전기적 특성 변화)

  • Kim, Woo-Hee;Kim, Bum-Soo;Kim, Hyung-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Ge is one of the attractive channel materials for the next generation high speed metal oxide semiconductor field effect transistors (MOSFETs) due to its higher carrier mobility than Si. But the absence of a chemically stable thermal oxide has been the main obstacle hindering the use of Ge channels in MOS devices. Especially, the fabrication of gate oxide on Ge with high quality interface is essential requirement. In this study, $HfO_xN_y$ thin films were prepared by plasma-enhanced atomic layer deposition on Ge substrate. The nitrogen was incorporated in situ during PE-ALD by using the mixture of nitrogen and oxygen plasma as a reactant. The effects of nitrogen to oxygen gas ratio were studied focusing on the improvements on the electrical and interface properties. When the nitrogen to oxygen gas flow ratio was 1, we obtained good quality with 10% EOT reduction. Additional analysis techniques including X-ray photoemission spectroscopy and high resolution transmission electron microscopy were used for chemical and microstructural analysis.

A study on the Initial Nanopore Formation in the Calix Arene Based Porogen Templated Porous Thin Film (칼릭스아렌 포로젠을 이용한 다공성 박막의 초기 나노기공 형성과정에 관한 연구)

  • Kim, Do-Hun;Yim, Jin-Heong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.669-675
    • /
    • 2011
  • Fourier Transform Infrared Spectroscopy and in-situ Position Annihilation Lifetime Spectroscopy(PALS) analysis of hybrid film, which consist of silsesquioxane(SSQ) and 4-tert-butyl calix[4]arene-O,O',O",O'"-tetraacetic acid tetraethyl ester(CA[4]) have been investigated in order to understand initial formation of nanopore in the next generation porous low-k dielectrics(k < 2.0). SSQ/CA[4] can provide effective homogeneous thin film having porous structure. The porogen decomposition behavior were completely different in the two kinds of SSQ/CA[4] based hybrid film (i.e. SSQ/CA[4] 10 and SSQ/CA[4] 20%). Relatively small pores(1.5 nm) come from dispersion of uni-molecular CA[4] in the SSQ matrix have been generated at $300^{\circ}C$, while mesopores(2.5~3.0 nm) induced from self assembled CA[4] have been generated at $250^{\circ}C$. It might be due to highly interconnected structure of SSQ/CA[4] 20% hybrid thin film resulting in facile evacuating of decomposed fragment of CA[4] molecule.

Electrical characteristics of in-situ doped polycrystalline 3C-SiC thin films grown by CVD (CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.199-200
    • /
    • 2009
  • This paper describes the electrical properties of polycrystalline (poly) 3C-SiC thin films with different nitrogen doping concentrations. The in-situ-doped poly 3C-SiC thin films were deposited by using atmospheric-pressure chemical vapor deposition (APCVD) at $1200^{\circ}C$ with hexamethyldisilane (HMDS: $Si_2$ $(CH_3)_6)$ as a single precursor and 0 ~ 100 sccm of $N_2$ as the dopant source gas. The peaks of the SiC (111) and the Si-C bonding were observed for the poly 3C-SiC thin films grown on $SiO_2/Si$ substrates by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses, respectively. The resistivity of the poly 3C-SiC thin films decreased from $8.35\;{\Omega}{\cdot}cm$ for $N_2$ of 0 sccm to $0.014\;{\Omega}{\cdot}cm$ with $N_2$ of 100 sccm. The carrier concentration of the poly 3C-SiC films increased with doping from $3.0819\;{\times}\;10^{17}$ to $2.2994\;{\times}\;10^{19}\;cm^{-3}$, and their electronic mobilities increased from 2.433 to $29.299\;cm^2/V{\cdot}S$.

  • PDF

Virtual Metrology for predicting $SiO_2$ Etch Rate Using Optical Emission Spectroscopy Data

  • Kim, Boom-Soo;Kang, Tae-Yoon;Chun, Sang-Hyun;Son, Seung-Nam;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.464-464
    • /
    • 2010
  • A few years ago, for maintaining high stability and production yield of production equipment in a semiconductor fab, on-line monitoring of wafers is required, so that semiconductor manufacturers are investigating a software based process controlling scheme known as virtual metrology (VM). As semiconductor technology develops, the cost of fabrication tool/facility has reached its budget limit, and reducing metrology cost can obviously help to keep semiconductor manufacturing cost. By virtue of prediction, VM enables wafer-level control (or even down to site level), reduces within-lot variability, and increases process capability, $C_{pk}$. In this research, we have practiced VM on $SiO_2$ etch rate with optical emission spectroscopy(OES) data acquired in-situ while the process parameters are simultaneously correlated. To build process model of $SiO_2$ via, we first performed a series of etch runs according to the statistically designed experiment, called design of experiments (DOE). OES data are automatically logged with etch rate, and some OES spectra that correlated with $SiO_2$ etch rate is selected. Once the feature of OES data is selected, the preprocessed OES spectra is then used for in-situ sensor based VM modeling. ICP-RIE using 葰.56MHz, manufactured by Plasmart, Ltd. is employed in this experiment, and single fiber-optic attached for in-situ OES data acquisition. Before applying statistical feature selection, empirical feature selection of OES data is initially performed in order not to fall in a statistical misleading, which causes from random noise or large variation of insignificantly correlated responses with process itself. The accuracy of the proposed VM is still need to be developed in order to successfully replace the existing metrology, but it is no doubt that VM can support engineering decision of "go or not go" in the consecutive processing step.

  • PDF

Simultaneous optical ignition and spectroscopy of a two-phase spray flame for feedback control System (이상상태 분무 화염에서의 레이저 점화 및 분광 측정을 통한 피드백 제어 연구)

  • Lee, Seok Hwan;Kim, Hyunwoo;Do, Hyungrok;Yoh, Jack J.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.215-218
    • /
    • 2015
  • Simultaneous laser ignition and spectroscopy is a scheme that enables rapid determination of the local equivalence ratio and condensed fuel concentration during a reaction in a two phase spray flame. We have conducted quantitative analysis of the LIBS signals according to the equivalence ratio, droplet size, droplet number density and droplet concentration as a part of novel feedback control strategy proposed for flame ignition and stabilization with simultaneous in situ combustion flow diagnostics. This is a desirable scheme since such real time information onboard an engine for instance can be constantly monitored and fed back to the control loop to enhance the mixing process and minimize emissions of unwanted species and potential combustion instability.

  • PDF

PCDS: 반도체 및 디스플레이 공정 시 실시간 입자 분석 및 모니터링 방법

  • Kim, Deuk-Hyeon;Kim, Yong-Ju;Gang, Sang-U;Kim, Tae-Seong;Lee, Jun-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.70.2-70.2
    • /
    • 2015
  • 현재 반도체 및 디스플레이이 공정 분야는 1 um 이상의 입자에서부터 10 nm이하 크기의 오염입자를 제어해야 한다. 현재 오염원인을 파악하기 위해서 사용하는 방법은 공정 완료 후 대상물(웨이퍼 및 글래스)을 CD-SEM (Critical Dimension Scanning Electron Microscope)와 같은 첨단 분석장비를 사용하여 사후 (Ex-situ) 진행하고 있다. 이러한 방법은 오염원이 이미 공정 대상물을 오염시키고 난 후 그 원인을 분석하는 방법으로 그 원인을 찾기가 어려울 뿐만 아니라, 최근 공정관리가 공정 진행 중(In-situ) 행해져야 하는 추세로 봤을 때 합당한 방법이라 할 수 없다. 이를 해결하기 위해 진공공정 중 레이저를 이용하여 측정하고자 하는 여러 시도들이 있었지만, 여전히 긍정적인 답변을 보여주지 못하고 있다. 본 발표에서 소개하는 PCDS (Particle Characteristic Diagonosis System)은 PBMS (Particle Beam Mass Spectrometer)와 SEM (Scanning Electron Microscope), 그리고 EDS (Energy Dispersive X-ray Spectroscopy)를 통합하여 만든 시스템으로 진공공정 중 (In-situ) 챔버 내부에서 발생하고 있는 입자의 크기 분포, 입자의 형상, 그리고 입자의 성분을 실시간으로 분석할 수 있는 방법을 제공한다. 이러한 방법 (PCDS)에 대한 개념과 원리, 그리고 현재까지 개발된 단계에서 얻어진 결과에 대해 소개할 것이다.

  • PDF