Structural Studies of New Cathode and Anode Materials for Lithium Batteries Using *In Situ* XRD and x—ray Absorption Spectroscopy

Dr. X.-Q. Yang

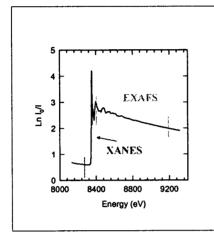
(Brookhaven National Lab. USA)

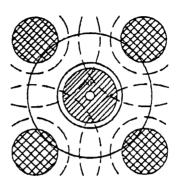
Structural Studies of New Cathode and Anode Materials for Lithium Batteries Using In Situ XRD and x-ray Absorption Spectroscopy

X. Q. Yang, J. McBreen, and M. Balasubramanian
Brookhaven National Lab. Upton, NY11973, USA
W-S. Yoon and C. P. Grey, SUNY Stony Brook, Stony Brook NY11794, USA
M. Yoshio, Saga University, Saga, 840-8502, Japan
X. Huang, L. Chen, and L. Liu, Institute of Physics, Chinese Academy of Sciences

November 23, 2002
To be presented at the 2002 Korean Battery Symposium
Seoul National University, Seoul, Korea

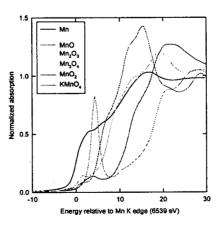
Acknowledgment

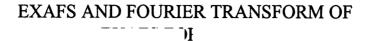

This work was supported by the US Department of Energy Division of Materials Science of the Office of Basic Energy Science, under contract no. DE-AC02-98CH10886.

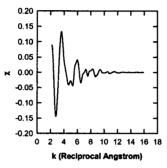


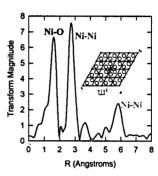
Outlines

- The structure studies of the new carbon coated silicon anode materials using *in situ* XRD
- The long-range and local structure changes of the LiMn_{0.5}Ni_{0.5}O₂ cathode material during electrochemical cycling using in situ XRD, in situ x-ray absorption and NMR spectroscopy
- The surface damages of cathode materials caused by interaction with electrolytes and the effects of surface coating

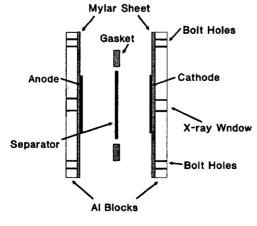


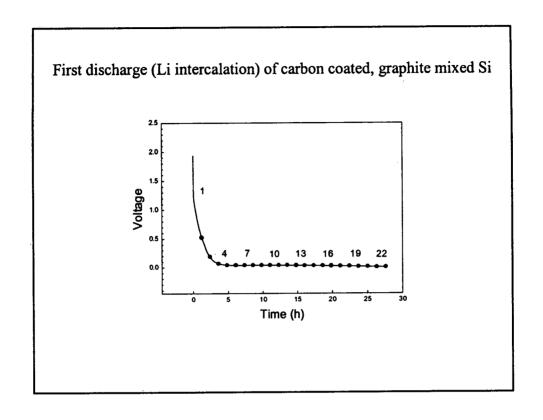


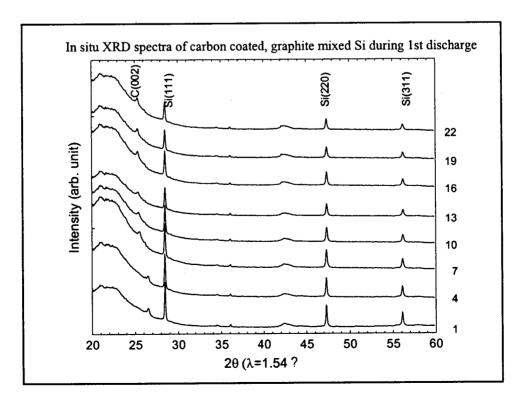


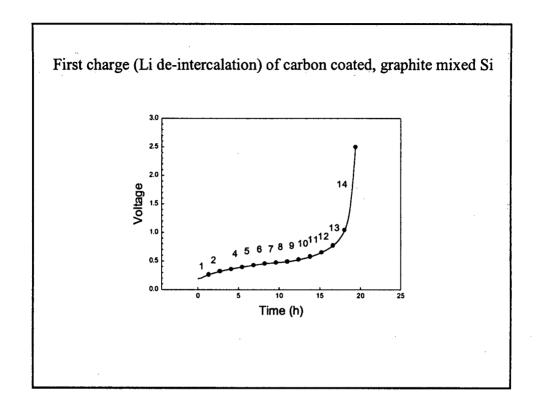

XANES GIVES INFORMATION ON OXIDATION STATE AND COORDINATION

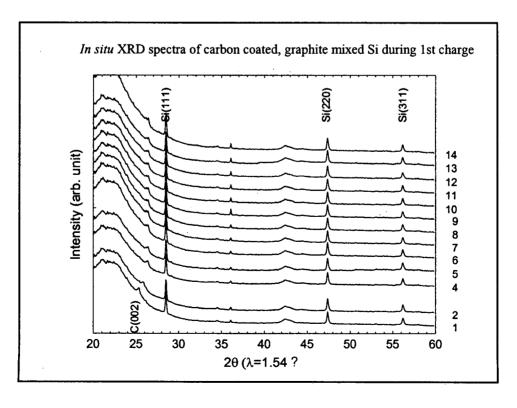
Effect of oxidation state on Mn XANES

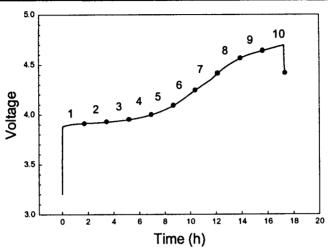


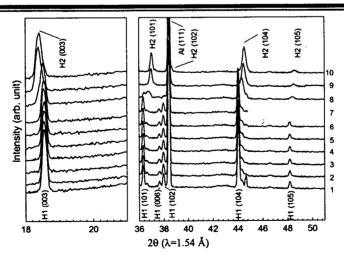



ENAFS data can be fitted in k and R space to derive bond distances and coordination numbers


EXAFS gives structural information

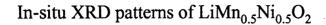

CELL FOR IN SITU XAS AND XRD STUDIES OF LITHIUM-ION ELECTRODE MATERIALS

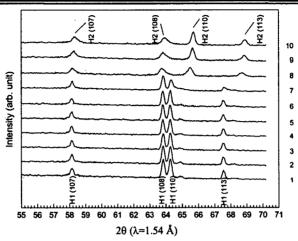




The cell was charged at a constant current of 0.3 mA for 17 hours to reach the 4.7 V cut-off limit with a specific charge capacity about 175 mAh/g.

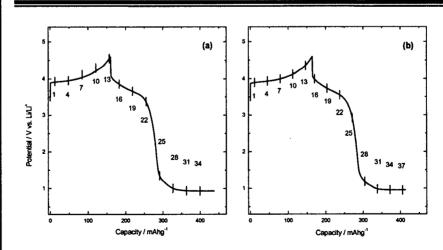
BROOKHAVEN


In-situ XRD patterns of LiMn $_{0.5}$ Ni $_{0.5}$ O $_2$



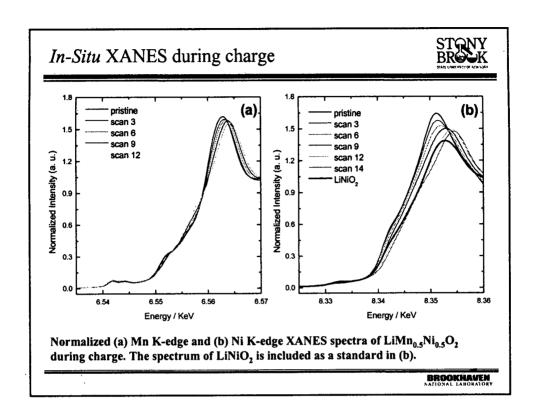
Two hexagonal phases (H1, H2) are identified and the Bragg peaks related to each of them are indexed. H3 phase formation suppressed (at least up to 4.6V).

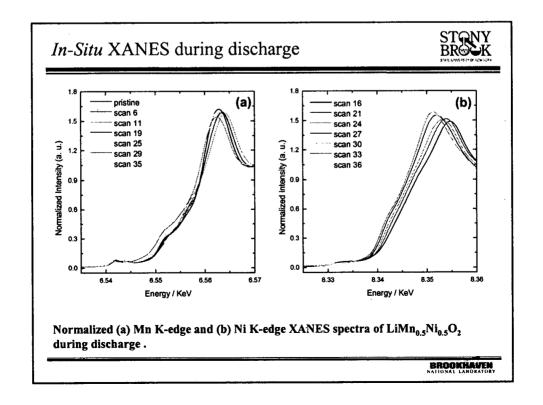
BROOKHAVEN

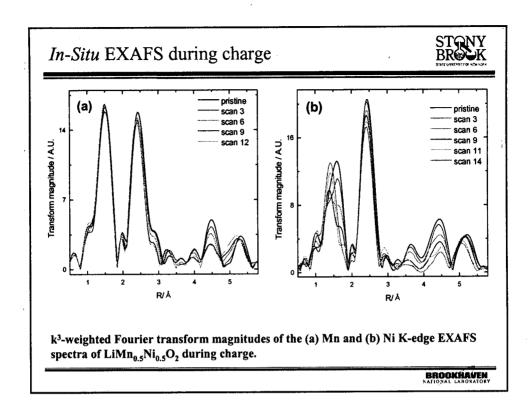


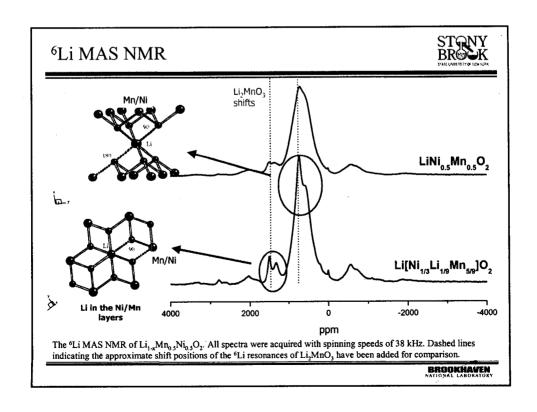
The changes in lattice parameters from H1 (a=2.895 Å and c=14.311 Å from scan 1) to H2 (a=2.839 Å and c=14.428 Å from scan 10) are significantly smaller than those in the LiNiO₂ system

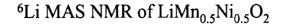
BROOKHAVEN

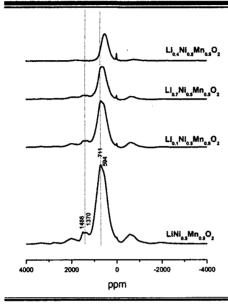

First Cycle Curve for in-situ XAS results






Voltage profiles during the first charge and discharge; (a) cell for the Mn XAS (b) cell for the Ni XAS. Every third XAS scan was marked on the curves.


BROOKHAVEN



- •On charging, Li ions in both the Mn⁴⁺/Ni²⁺ and lithium layers are removed and no new resonances are observed.
- •Only the resonance due to Li in the lithium layers at ~ 600 ppm is observed for the $\rm Li_{0.4}Mn_{0.5}Ni_{0.5}O_2$ sample.
- Li NMR results as a function of state of charge indicate that, in contrast to ${\rm Li}[{\rm Li}_{0.2}{\rm Mn}_{0.4}{\rm Cr}_{0.4}]{\rm O}_2$, the Li is removed from the Ni/Mn layers
- •The lithium that remains in the lattice at higher potentials appears to be predominantly nearby nickel.

BROOKHAVEN

Summaries

- The charge process above 2 V is accompanied by a reversible phase transition between H1 to H2, similar to the LiNiO, system.
- From the Mn and Ni K-edge XANES results of LiMn $_{0.5}$ Ni $_{0.5}$ O₂, we conclude that the charge compensation, when charging between 2 and 4.6 V, is achieved mainly by the oxidation of Ni²⁺ to Ni⁴⁺ ions, while the manganese ions remain mostly unchanged in the Mn⁴⁺ state.
- When discharging LiMn _{0.5}Ni_{0.5}O₂ at low voltage plateau (~1 V), however, the charge compensation for the Li-ion intercalation process is achieved via reduction of Mn⁴⁺.
- The 6 Li MAS NMR results of LiMn $_{0.5}$ Ni $_{0.5}$ O $_2$ at different charge states reveal that Li is found not only in the Li layer but also in the Ni $^{2+}$ /Mn $^{4+}$ layers, primarily in an environment surrounded by 6 Mn $^{4+}$ as in Li,MnO $_3$.
- All the Li⁺ in the Ni²⁺/Mn⁴⁺ layers are removed on charging to form Li_{0.4}Mn_{0.5}Ni_{0.5}O₂, the residual Li⁺ occupying sites near nickel in the lithium layers.
- The ⁶Li MAS NMR results of Li[Li_{1/9}Mn_{5/9}Ni_{3/9}]O₂ after first cycle reveal that Li ions re-intercalated not only into the Li layer but also into the Ni²⁺/Mn⁴⁺ layers.

BROOKHAVEN