• Title/Summary/Keyword: impulsive equation

Search Result 112, Processing Time 0.023 seconds

The vertical spanning strip wall as a coupled rocking rigid body assembly

  • Sorrentino, Luigi;Masiani, Renato;Griffith, Michael C.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.433-453
    • /
    • 2008
  • The equation of motion of a one way (vertical) spanning strip wall, as an assembly of two rigid bodies, is presented. Only one degree of freedom is needed to completely describe the wall response as the bodies are assumed to be perfectly rectangular and are allowed to rock but not to slide horizontally. Furthermore, no arching action occurs since vertical motion of the upper body is not restrained. Consequently, the equation of motion is nonlinear, with non constant coefficients and a Coriolis acceleration term. Phenomena associated with overburden to self weight ratio, motion triggering, impulsive energy dissipation, amplitude dependency of damping and period of vibration, and scale effect are discussed, contributing to a more complete understanding of experimental observations and to an estimation of system parameters based on the wall characteristics, such as intermediate hinge height and energy damping, necessary to perform nonlinear time history analyses. A comparison to a simple standing, or parapet, wall is developed in order to better highlight the characteristics of this assembly.

The interference effect of Frequency Hopping signal for 16 QAM system in impulsive noise environment (임펄스 잡음 환경하에서 16QAM시스템에 미치는 주파수 호핑 신호의 간섭효과)

  • 장은영;김원후
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.191-195
    • /
    • 1987
  • When a 160QAM receiver in the band of spread spectrum system is interfered with a pseudo-random frequency-hopp-ing signal the interference signal has the form of the pulse amplitude probability density function. Each interfrering pulse amplitude probability density function Each interfering pulse amplitude is dependent upon theprobability density function of hopping frequency and the selectivity characteristic of 16QAM system in this paper the error rate equation of a system performance has been derived in the above condition which are interfrerence form and impulsive noise environmensts. The results of system analysis show us that the system performance is de-graded by impulsive noise and interference power, which improved as the frequency hopping bandsidth increases whit respect to receiver bandwidth

  • PDF

QAM Error Performance in the Environment of Cochannel Interference and Impulsive Noise (동일채널간섭 및 임펄스잡음 환경하에서의 QAM신호의 오율특성)

  • 제종원;공병옥;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 1982
  • We have studied and discussed the error rate performance of Quadrature Amplitude Modulation(QAM) in an environment of cochannel QAM interference and impulsive noise. A general equation of error probability for L-level QAM signal has been derived and the error rate of the 16-QAM signal, as an example, has been calculated as functions of carrier-to-noise power ratio(CNR), carrier-to-interferer power ratio(CIR), impulsive indes, and the phase difference between signal and interferer.

  • PDF

PSK Error Performance with Impulsive Noise and Cochannel Interference (임펄스 잡음 및 동일 채널 간섭하의 PSK신호의 오율 특성)

  • 강병옥;조성준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 1983
  • The error rate performance of phase shift Keyed(PSK) signal has been evaluated in terms of carrier-to-noise ratio(CNR), carrier-to-interferer ratio(CIR), impulsive index, and the phase difference between signal and interferer in the environment of cochannel PSK inter-ference and impulsive noise. We hays derived a general equation of the probability density function (p.d.f.) of output of coherent phase detector. And the error rate of the received binary PSK(BPSK) signal has been numerically evaluated. The graphic results show us that the best case is the situation of the signal and the inter- ferer meet with orthogonal phase.

  • PDF

Complex Dynamic Behaviors of an Impulsively Controlled Predator-prey System with Watt-type Functional Response

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.831-844
    • /
    • 2016
  • In this paper, we consider a discrete predator-prey system with Watt-type functional response and impulsive controls. First, we find sufficient conditions for stability of a prey-free positive periodic solution of the system by using the Floquet theory and then prove the boundedness of the system. In addition, a condition for the permanence of the system is also obtained. Finally, we illustrate some numerical examples to substantiate our theoretical results, and display bifurcation diagrams and trajectories of some solutions of the system via numerical simulations, which show that impulsive controls can give rise to various kinds of dynamic behaviors.

DYNAMICS OF A ONE-PREY AND TWO-PREDATOR SYSTEM WITH TWO HOLLING TYPE FUNCTIONAL RESPONSES AND IMPULSIVE CONTROLS

  • Baek, Hunki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.151-167
    • /
    • 2012
  • In this paper, we investigate the dynamic behaviors of a one-prey and two-predator system with Holling-type II functional response and defensive ability by introducing a proportion that is periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for predators at different fixed time. We establish conditions for the local stability and global asymptotic stability of prey-free periodic solutions by using Floquet theory for the impulsive equation, small amplitude perturbation skills. Also, we prove that the system is uniformly bounded and is permanent under some conditions via comparison techniques. By displaying bifurcation diagrams, we show that the system has complex dynamical aspects.

EXISTENCE RESULTS FOR ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF NONLINEAR SECOND-ORDER IMPULSIVE qk-DIFFERENCE EQUATIONS

  • Ntouyas, Sotiris K.;Tariboon, Jessada;Thiramanus, Phollakrit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.335-350
    • /
    • 2016
  • Based on the notion of $q_k$-derivative introduced by the authors in [17], we prove in this paper existence and uniqueness results for nonlinear second-order impulsive $q_k$-difference equations with anti-periodic boundary conditions. Two results are obtained by applying Banach's contraction mapping principle and Krasnoselskii's fixed point theorem. Some examples are presented to illustrate the results.

Controllability for the Impulsive Semilinear Fuzzy Integrodifferential Equations with Nonlocal Conditions (비국소조건을 가지는 충격 준선형퍼지적분미분방정식에 대한 제어 가능성)

  • Kwun, Young-Chel;Ahn, Young-Chel;Park, Dong-Gun;Kim, Seon-Yu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.275-278
    • /
    • 2006
  • In this paper. we study the controllability for the impulsive semilinear fuzzy integrodifferential equations with nonlocal condition in $E_{N}$ by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in $E_{N}$.

  • PDF

EXISTENCE UNIQUENESS AND STABILITY OF NONLOCAL NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSES AND POISSON JUMPS

  • CHALISHAJAR, DIMPLEKUMAR;RAMKUMAR, K.;RAVIKUMAR, K.;COX, EOFF
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.107-122
    • /
    • 2022
  • This manuscript aims to investigate the existence, uniqueness, and stability of non-local random impulsive neutral stochastic differential time delay equations (NRINSDEs) with Poisson jumps. First, we prove the existence of mild solutions to this equation using the Banach fixed point theorem. Next, we demonstrate the stability via continuous dependence initial value. Our study extends the work of Wang, and Wu [16] where the time delay is addressed by the prescribed phase space 𝓑 (defined in Section 3). To illustrate the theory, we also provide an example of our methods. Using our results, one could investigate the controllability of random impulsive neutral stochastic differential equations with finite/infinite states. Moreover, one could extend this study to analyze the controllability of fractional-order of NRINSDEs with Poisson jumps as well.