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EXISTENCE UNIQUENESS AND STABILITY OF NONLOCAL
NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH

RANDOM IMPULSES AND POISSON JUMPS

DIMPLEKUMAR CHALISHAJAR∗, K. RAMKUMAR, K. RAVIKUMAR, GEOFF COX

Abstract. This manuscript aims to investigate the existence, uniqueness,
and stability of non-local random impulsive neutral stochastic differential
time delay equations (NRINSDEs) with Poisson jumps. First, we prove the
existence of mild solutions to this equation using the Banach fixed point
theorem. Next, we demonstrate the stability via continuous dependence
initial value. Our study extends the work of Wang, and Wu [16] where the
time delay is addressed by the prescribed phase space B (defined in Section
3). To illustrate the theory, we also provide an example of our methods.
Using our results, one could investigate the controllability of random im-
pulsive neutral stochastic differential equations with finite/infinite states.
Moreover, one could extend this study to analyze the controllability of
fractional-order of NRINSDEs with Poisson jumps as well.
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1. Introduction

For the last few decades, interest in the study of integrodifferential and sto-
chastic differential equations has grown among the scientific community. We
know that the presence of noise and/or stochastic perturbations can be unavoid-
able when formulating a phenomenon. In such cases, stochastic models tend
to offer better performance over their deterministic counterparts. The power
of stochastic approaches is seen in the formulation and analysis of phenomena,
such as population dynamics, stock prices, heat conduction in materials, etc.

Poisson jumps have also become a prevalent modeling component in eco-
nomics, finance, physics, biology, medicine, and other sciences. It is natural
and necessary to include a jump term in the stochastic differential equation.
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Moreover, many practical systems (such as sudden price variations/jumps due
to stock-market crashes, earthquakes, epidemics, and so on) may undergo some
jump-type stochastic perturbations. The sample paths of such systems are not
continuous and it is more appropriate to consider stochastic processes with jumps
to describe such models. In general, these jump models are derived from Pois-
son random measures. The sample paths of such systems are right continuous
and have left limits (càdlàg in short). For more details, see the monographs
[12, 13, 1], papers [18, 2], and references therein.

On the other hand, impulsive differential equations also attracted the atten-
tion of researchers (see [3, 5, 9]). Differential equations with fixed moments of
impulses have become a natural framework for modeling processes in econom-
ics, physics, and population dynamics processes. The impulses in usual exist at
deterministic or random points. The properties of fixed type impulses are estab-
lished in many articles [5, 9, 10, 14]. Wu and Meng [17] was the first to consider
a random impulsive ordinary differential system and established boundedness of
solutions to the model by Liapunov’s direct function. Moreover, Anguraj and
Vinodkumar [6] investigated the existence and uniqueness of neutral functional
differential equations with random impulses. Vinodkumar et al. [15] estab-
lished the existence and stability results on random impulsive neutral partial
differential equations.

Various disturbance factors from random inputs influence stochastic differ-
ential equations (SDEs). By the interaction of stochastic processes and mathe-
matical models, the real-world system can be interpreted. Several systems are
modeled using stochastic functional differential equations with impulses. In gen-
eral, impulses appear at random time points, i.e., impulse time and impulsive
functions are random variables. SDEs with random impulses are widely used in
medicine, biology, economy, finance, and so on. Wang and Wu [16] considered
the random impulsive SDEs with stock prices model of the form:

d[S(t)] = αSdt+ βS(t)dB(t), t ≥ 0, t ̸= τk,

S(τk) = akS(τ
−
k ), k = 1, 2, ...,

S(0) = S0.

Here Bt is a Brownian motion or Wiener process, S(t) represents the price of the
stock at time t, {τk} represents the release time of the important information
relating to the stock. S(τ−k ) = limt→τk−0 S(t) and S(0) ∈ R. In reality, {τk} is a
sequence of random variables, which satisfies 0 < τ1 < τ2 < · · · . Very recently,
Anguraj et al. [4] investigated the stability of SDEs with random impulsive and
Poisson jumps. However, to the best of our knowledge, so far, no work has been
reported in the literature about NRINSDEs with Poisson jumps. Inspired by
the above-mentioned works, this paper aims to fill this gap by examining the
existence, uniqueness, and stability of NRINSDEs with Poisson jumps.
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The considered NRINSDEs with Poisson jumps is of the form:

d[x(t) + h(t, xt)] = f(t, xt)dt+ g(t, xt)dw(t) +

∫
U

p(t, xt, u)Ñ(dt, du), t ≥ 0

x(ξ−k ) = bk(δk)x(ξ
−
k ), k = 1, 2, ...,

x(0) + q(x) = x0 = ϕ, −δ ≤ θ ≤ 0, (1)
where δk is a random variable defined from Ω to Dk =def (0, dk) with 0 <
dk < +∞ for k = 1, 2, .... Suppose that δi and δj are independent of each other
as i ̸= j for i, j = 1, 2, .... Let us define C([−δ, 0],L2(Ω,Rd)). Here, suppose
T ∈ (t0,+∞), f : [t0,T] × C → Rd, g : [t0,T] × C → Rd×m, h : [t0,T] × C → Rd,
p : [t0,T]×C×U → Rd, q : C → C and bk : Dk → Rd×d, and xt is Rd-valued sto-
chastic process such that xt ∈ Rd, xt = {x(t+ θ) : −δ ≤ θ ≤ 0}. The impulsive
moments ξk from a strictly increasing sequence, i.e., ξ0 < ξ1 < · · · < ξk < · · · <
limk→∞, and x(ξ−k ) = limt→ξk−0 x(t). We assume that ξ0 = t0 and ξk = ξk−1+δk
for k = 1, 2, .... Obviously, {ξk} is a process with independent increments. We
suppose that {N(t), t ≥ 0} is the simple counting process generated by {ξk}, and
{w(t) : t ≥ 0} is a given m-dimensional Wiener process. We denote ℑ(1)

t the σ-
algebra generated by {N(t), t ≥ 0}, and denote ℑ(2)

t the σ-algebra generated by
{w(s), s ≤ t}. We assume that ℑ(1)

∞ ,ℑ(2)
∞ and ξ are mutually independent. In

(1), Ñ(dt, du) = N(dt, du) − dtv(du) denotes the compensated Poisson measure
independent of w(t) and Ñ(dt, du) represents the Poisson counting measure as-
sociated with a characteristic measure v.
Highlights:

(1) This work extends the work of Wang and Wu [16]
(2) Time delay of NRINSDEs with Poisson jumps is taken care of by the

prescribed phase space B
The arrangement of the rest of the paper is as follows. In Section 2, some

preliminaries and results applied in the latter part of the paper are presented.
Section 3 is devoted to studying the existence and uniqueness of mild solutions
of the system (1). In Section 4, the stability of the mild solution of the system
(1) is studied.

2. Preliminaries

Let (Ω,ℑ,P) is a probability space with filtration {ℑt}, t ≥ 0 satisfying
ℑt = ℑ(1)

t ∨ ℑ(2)
t . Let L2(Ω,Rd) be the collection of all strongly measurable, ℑt

measurable, Rd-valued random variables x with norm ∥x∥L2 = (E ∥x∥2) 1
2 , where

the expectation E is defined by Ex =
∫
Ω
xdP. Let δ > 0 denote the Banach

space of all piecewise continuous Rd-valued stochastic process
{
ξ(t), t ∈ [−δ, 0]

}
by C([−δ, 0],L2(Ω,Rd)) equipped with the norm

∥ψ∥C = sup
θ∈[−δ,0]

(
E ∥ψ(θ)∥2

) 1
2

.
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The initial data

x0 = ϕ = x(0) + q(x) = {ϕ(θ) : −δ ≤ θ ≤ 0} , (2)

is an ℑt0 measurable, [−δ, 0] to Rd-valued random variable such that E ∥ζ∥2 <
∞.
Poisson Jumps Process:
Let p(t), t ≥ 0, be an H-valued, σ-finite stationary ℑt-adapted Poisson point pro-
cess on (Ω,ℑ,ℑt,P). The counting random measure Np defined by Np((t1, t2]×
Λ)(ω) =

∑
t1<s<t2

IΛ(p(s)) for any Λ ∈ Bσ(H) is called the Poisson random mea-

sure associated with the Poisson point process p. Define the measure Ñ by

Ñ(dt, du) = Np(dt, du)− dtv(du),

where v is the characteristic measure on H called the compensated Poisson ran-
dom measure associated with the Poisson point process p.

Definition 2.1. For a given T ∈ (t0,+∞), a R−d-valued stochastic process x(t)
on t0 − δ ≤ t ≤ T is called a solution to (1) with the initial data (2) if for every
t0 ≤ t ≤ T, x(t0) = ϕ, {xt}t0≤t≤T is ℑt-adapted and

x(t) =

∞∑
k=0

[ k∏
i=1

bi(δi)[ϕ(0)− q(x) + h(0, ϕ)]−
k∏

i=1

bi(δi)h(t, xt)

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

f(s, xs)ds+

∫ t

ξk

f(s, xs)ds

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

g(s, xs)dw(s) +

∫ t

ξk

g(s, xs)dw(s)

+

k∑
i=1

k∏
j=i

bj(δj)

∫
U

∫ ξi

ξi−1

p(s, xs, u)Ñ(ds, du)

+

∫
U

∫ t

ξk

p(s, xs, u)Ñ(ds, du)

]
I[ξk,ξk+1)(t), (3)

where
k∏

j=i

bj(δj) = bk(δk)bk−1(δk−1) · · · bi(δi),

and I(A)(.) is the index function, i.e.,

IA(t) =

{
1, if t ∈ A,

0, if t /∈ A.
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Lemma 2.2. [7] For any r ≥ 1 and for arbitrary L0
2- valued predictable process

Φ(.)

sup
s∈[0,t]

E
∥∥∥∥∫ s

0

Φ(u)dw(u)

∥∥∥∥2r
X
= (r(2r − 1))

r

(∫ t

0

(E ∥Φ(s)∥2rL0
2
)ds

)r

3. Existence and Uniqueness

In order to derive the existence and uniqueness of the system (1), we shall
impose the following assumptions:

(H1) The functions f : [t0,T] × C → Rd, g : [t0,T] × C → Rd×m and h :
[t0,T] × C → Rd satisfies the Lipschitz condition such that there exist
constants Lf = Lf(T) > 0, Lg = Lg(T) > 0 and Lh = Lh(T) > 0 such
that,

E ∥f(t, xt)− f(t, yt)∥2 ≤ LfE ∥x− y∥2t ,
E ∥g(t, xt)− g(t, yt)∥2 ≤ LgE ∥x− y∥2t ,
E ∥h(t, xt)− h(t, yt)∥2 ≤ LhE ∥x− y∥2t ,

for x, y ∈ C, t ∈ [t0,T].
(H2) The functions p : [t0,T] × C × U → Rd satisfies the Lipschitz condition

such that there exist constants Lp = Lp(T) > 0 such that,

(i)

∫
U

E ∥p(t, xt, u)− p(t, yt, u)∥2 v(du)ds∨(∫
U

E ∥p(t, xt, u)− p(t, yt, u)∥4 v(du)ds
) 1

2

≤ LpE ∥x− y∥2t ,

(ii)

(∫
U

E ∥p(t, xt, u)∥4 v(du)ds
) 1

2

≤ Lp ∥x∥2t .

(H3) For all t ∈ [t0,T], it follows that f(t, 0), g(t, 0), h(t, 0) and p(t, 0, u) ∈ L2,
such that,

E ∥f(t, 0)∥2 ≤ κf, E ∥g(t, 0)∥2 ≤ κg,

E ∥h(t, 0)∥2 ≤ κh, E ∥p(t, 0, u)∥2 ≤ κp,

where κf, κg, κh and κp are constants.
(H4) The functions q : C → C is continuous, and there exists some constant

Lq > 0 such that

(i)E ∥q(t, xt)− q(t, yt)∥2 ≤ LqE ∥x− y∥2t ,
(ii)E ∥q(t, xt)∥2 ≤ Lq ∥x∥2t .

for x, y ∈ C, t ∈ [t0,T].
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(H5) The condition E

max
i,k

{
k∏

j=i

∥bj(δj)∥}

 is uniformly bounded. That is,

there exist constant C > 0 such that,

E

max
i,k

{
k∏

j=i

∥bj(δj)∥}

 ≤ C

for all δj ∈ Dj , j = 1, 2, 3...

Theorem 3.1. Let the hypotheses (H1)-(H5) be hold. Then there exists a unique
continuous mild solution to the system (1) for any initial value (t0, ϕ) with t0 ≥ 0
and ϕ ∈ B.

Proof. Let B be the phase space B = C([t0 − δ,T],L2(Ω,Rd)) endowed with the
norm

∥x∥2B = sup
t∈[t0,T]

∥xt∥2C ,

where ∥xt∥C = sup
t−δ≤s≤t

E ∥x(s)∥2.

We define the operator Φ : B → B by

(Φx)(t) =



ϕ(t)− q(x), t ∈ (+∞, t0];∑∞
k=0

[∏k
i=1 bi(δi)[ϕ(0)− q(x) + h(0, ϕ)]−

∏k
i=1 bi(δi)h(t, xt)

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

f(s, xs)ds+

∫ t

ξk

f(s, xs)ds

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

g(s, xs)dw(s) +

∫ t

ξk

g(s, xs)dw(s)

+

k∑
i=1

k∏
j=i

bj(δj)

∫
U

∫ ξi

ξi−1

p(s, xs, u)Ñ(ds, du)

+
∫
U

∫ t

ξk
p(s, xs, u)Ñ(ds, du)

]
I[ξk,ξk+1)(t), t ∈ [t0,T].

Now we have to prove that Φ maps B into itself.

∥(Φx)(t)∥2

=

∥∥∥∥ +∞∑
k=0

[ k∏
i=1

bi(δi)[ϕ(0)− q(x) + h(0, ϕ)]−
k∏

i=1

bi(δi)h(t, xt)

+

[ k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

f(s, xs)ds+

∫ t

ξk

f(s, xs)ds

]
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+

[ k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

g(s, xs)dw(s) +

∫ t

ξk

g(s, xs)dw(s)

]

+

[ k∑
i=1

k∏
j=i

bj(δj)

∫
U

∫ ξi

ξi−1

p(s, xs, u)Ñ(ds, du)

+

∫
U

∫ t

ξk

p(s, xs, u)Ñ(ds, du)

]]
I[ξk,ξk+1

(t)

∥∥∥∥2

≤ 5

+∞∑
k=0

[
k∏

i=1

∥bi(δi)∥2 ∥ϕ(0)− q(x) + h(0, ϕ)∥2 I[ξk,ξk+1)(t)

]

+ 5

+∞∑
k=0

[ k∏
i=1

∥h(t, xt)∥2 I[ξk,ξk+1)(t)

]

+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥


2(∫ t

t0

∥f(s, xs)∥ dsI[ξk,ξk+1)(t)

)2

+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥


2(∫ t

t0

∥g(s, xs)∥ dw(s)I[ξk,ξk+1)(t)

)2

+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥


2(∫ t

t0

∥p(s, xs, u)∥ Ñ(ds, du)I[ξk,ξk+1)(t)

)2

≤ 10

[
max

k

{
k∏

i=1

∥bi(δi)∥2
}][

∥ϕ(0)− q(x)∥2 + ∥h(0, ϕ)∥2
]

+ 10

[
max

k

{
k∏

i=1

∥bi(δi)∥2
}][

∥h(t, xt)− h(t, 0)∥2 + ∥h(t, 0)∥2
]

+ 10

max
i,k

1,

k∏
j=i

∥bj(δj)∥2



× (t− t0)

∫ t

t0

[
∥f(s, xs)− f(s, 0)∥2 + ∥f(s, 0)∥2

]
ds

+ 10

max
i,k

1,

k∏
j=i

∥bj(δj)∥2



× (t− t0)

∫ t

t0

[
∥g(s, xs)− g(s, 0)∥2 + ∥g(s, 0)∥2

]
ds
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+ 10

max
i,k

1,

k∏
j=i

∥bj(δj)∥2



× (t− t0)

[ ∫ t

t0

∫
U

[
∥p(s, xs, u)− p(s, 0, u)∥2 + ∥p(s, 0, u)∥2

]
v(du)ds

]

+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥2

× (t− t0)

[∫ t

0

∫
U

∥p(s, xs, u)∥4 v(du)ds
] 1

2

.

Then,

E ∥(Φx)(t)∥2t
≤ 20C2

[
E ∥ϕ(0)∥2 + LqE ∥x∥2

]
+ 10C2LhE ∥ϕ∥2

+ 10C2
[
LhE ∥x∥2t + κh

]
+ 10max

{
1, C2

}
(T− t0)

∫ t

t0

[
LfE ∥x∥2s + κf

]
ds

+ 10max
{
1, C2

}
(T− t0)C2

∫ t

t0

[
LgE ∥x∥2s + κg

]
ds

+ 20max
{
1, C2

}
(T− t0)

∫ t

t0

LpE ∥x∥2s ds

+ 10max
{
1, C2

}
(T− t0)

2κp

≤ 20C2
[
E ∥ϕ(0)∥2 + LqE ∥x∥2

]
+ 10C2LhE ∥ϕ∥2 + 10C2κh

+ 10C2LhE ∥x∥2t + 10max
{
1, C2

}
(T− t0)

∫ t

t0

LfE ∥x∥2s ds

+ 10max
{
1, C2

}
(T− t0)

2κf + 10max
{
1, C2

}
(T− t0)C2

∫ t

t0

LgE ∥x∥2s ds

+ 10max
{
1, C2

}
(T− t0)

2C2κg + 20max
{
1, C2

}
(T− t0)

∫ t

t0

LpE ∥x∥2s ds

+ 10max
{
1, C2

}
(T− t0)

2κp.

Taking supremum over t, we get

sup
t∈[t0,T]

E ∥(Φx)(t)∥2t

≤ 20C2

[
E ∥ϕ(0)∥2 + Lq sup

t∈[t0,T]

E ∥x∥2
]
+ 10C2LhE ∥ϕ∥2 + 10C2κh

+ 10C2Lh sup
t∈[t0,T]

E ∥x∥2t
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+ 10max
{
1, C2

}
(T− t0)

∫ t

t0

Lf sup
t∈[t0,T]

E ∥x∥2s ds

+ 10max
{
1, C2

}
(T− t0)

2κf + 10max
{
1, C2

}
(T− t0)C2

∫ t

t0

Lg sup
t∈[t0,T]

E ∥x∥2s ds

+ 10max
{
1, C2

}
(T− t0)

2C2κg + 20max
{
1, C2

}
(T− t0)

∫ t

t0

Lp sup
t∈[t0,T]

E ∥x∥2s ds

+ 10max
{
1, C2

}
(T− t0)

2κp

≤ 10

[
2C2E ∥ϕ∥2 + C2L2E ∥ϕ∥2 + C2κh

+max
{
1, C2

}
(T− t0)

2 (κf + C2κg + κp)

]
+ 10

[
2LqC2 + C2Lh +max

{
1, C2

}
(T− t0)

2 (Lf + LgC2 + 2Lp)
]
∥x∥2t .

Thus we obtain,
∥Φx∥2B ≤ m1 +m2 ∥x∥2B ,

where,

m1 = 10

[
2C2E ∥ϕ∥2 + C2L2E ∥ϕ∥2 + C2κh

+ max
{
1, C2

}
(T− t0)

2 (κf + C2κg + κp)

]
,

m2 = 10
[
2LqC2 + C2Lh +max

{
1, C2

}
(T− t0)

2 (Lf + LgC2 + 2Lp)
]
,

where m1 and m2 are constants. Hence Φ is bounded.
Now we have to prove that Φ is a contraction mapping. For any x, y ∈ B, we
have
∥(Φx)(t)− (Φy)(t)∥2

≤ 5

[
max

k

{
k∏

i=1

∥bi(δi)∥2
}
∥q(x)− q(y)∥ I[ξk,ξk+1)

]2

+ 5

[
max

k

{
k∏

i=1

∥bi(δi)∥2
}
∥h(t, xt)− h(t, yt)∥ I[ξk,ξk+1)

]2

+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥2

∫ t

t0

∥f(s, xs)− f(s, ys)∥ dsI[ξk,ξk+1)

2

+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥2

∫ t

t0

∥g(s, xs)− g(s, ys)∥ dw(s)I[ξk,ξk+1)

2
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+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥2

∫ t

t0

∫
U

∥p(s, xs, u)− p(s, ys, u)∥ Ñ(ds, du)I[ξk,ξk+1)

2

.

E ∥(Φx)(t)− (Φy)(t)∥2

≤ 5C2E ∥q(x)− q(y)∥2 + 5C2E ∥h(t, xt)− h(t, yt)∥2

+ 5max
{
1, C2

}
(T− t0)

∫ t

t0

E ∥f(s, xs)− f(s, ys)∥2 ds

+ 5max
{
1, C2

}
(T− t0)C2

∫ t

t0

E ∥g(s, xs)− g(s, ys)∥2 ds

+ 5max
{
1, C2

}
(T− t0)

∫ t

t0

E ∥p(s, xs, u)− p(s, ys, u)∥2 ds

≤ 5C2Lq ∥x− y∥2t + 5C2Lh ∥x− y∥2t + 5max
{
1, C2

}
(T− t0)

∫ t

t0

LfE ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)C2

∫ t

t0

LgE ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)

∫ t

t0

LpE ∥x− y∥2s ds,

Moreover,
sup

t∈[t0,T]

E ∥(Φx)(t)− (Φy)(t)∥2

≤ 5C2Lq sup
t∈[t0,T]

∥x− y∥2t + 5C2Lh sup
t∈[t0,T]

∥x− y∥2t

+ 5max
{
1, C2

}
(T− t0)

2Lf sup
t∈[t0,T]

E ∥x− y∥2s

+ 5max
{
1, C2

}
(T− t0)

2C2Lg sup
t∈[t0,T]

E ∥x− y∥2s

+ 5max
{
1, C2

}
(T− t0)

2Lp sup
t∈[t0,T]

E ∥x− y∥2s

≤
{
5C2Lq + 5C2Lh + 5max

{
1, C2

}
(T− t0)

2[Lf + C2Lg + Lp]
}

sup
t∈[t0,T]

E ∥x− y∥2t .

Thus
∥(Φx)− (Φy)∥2B ≤ Υ(T) ∥x− y∥2B ,

with
Υ(T) = 5C2Lq + 5C2Lh + 5max

{
1, C2

}
(T− t0)

2[Lf + C2Lg + Lp]

By taking suitable 0 < T1 < T sufficiently small such that, Υ(T1) < 1. Hence Φ
is a contraction on BT1

(BT1
denotes B with T substituted by T1). By Banach

Contraction Principle, a unique fixed point x ∈ BT1
is obtained for the operator

Φ and therefore Φx = x is a mild solution of the system (1). The solution can
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be extended to the entire interval (−δ,T] in finitely many steps which completes
the proof for the existence and uniqueness of mild solutions on the entire interval
(−δ,T]. □

4. Stability

The stability through continuous dependence of solutions on initial condition
are investigated.

Definition 4.1. A mild solution x(t) of the system (1) with initial condition ϕ
satisfies (2) is said to be stable in the mean square if for all ϵ > 0 there exist,
η > 0 such that,

E ∥x(t)− x̂(t)∥2 ≤ ϵ whenever,

E
∥∥∥ϕ− ϕ̂

∥∥∥2 ≤ η for all t ∈ [t0,T],

where x̂(t) is another mild solution of the system (1) with initial value ϕ defined
in (2).

Theorem 4.2. Let x(t) and y(t) be mild solution of the system (1) with initial
conditions ϕ1 and ϕ2 respectively. If the assumptions of theorem 3.1 gets satisfied,
the mean solution of the system (1) is stable in the mean square.

Proof. By assumptions, x(t) and y(t) be two mild solutions of the system (1)
with initial values ϕ1 and ϕ2 respectively.
x(t)− y(t)

=

+∞∑
k=0

[ k∏
i=1

bi(δi) [[ϕ1 − ϕ2] + [q(x)− q(y)] + [h(0, ϕ1)− h(0, ϕ2)]]

−
k∏

i=1

bi(δi) [h(t, xt)− h(t, yt)]

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

[f(s, xs)− f(s, ys)] ds+

∫ t

ξk

[f(s, xs)− f(s, ys)] ds

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

[g(s, xs)− g(s, ys)] dw(s) +

∫ t

ξk

[g(s, xs)− g(s, ys)] dw(s)

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

∫
U

[p(s, xs, u)− p(s, ys, u)] Ñ(ds, du)

+

∫ t

ξk

∫
U

[p(s, xs, u)− p(s, ys, u)] Ñ(ds, du)

]
I[ξk,ξk+1)(t).

Then,
E ∥x(t)− y(t)∥2
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≤ 15C2E ∥ϕ1 − ϕ2∥2 + 15C2E ∥q(x)− q(y)∥2

+ 15C2E ∥h(0, ϕ1)− h(0, ϕ2)∥2 + 5C2E ∥h(t, xt)− h(t, yt)∥2

+ 5max
{
1, C2

}
(t− t0)

∫ t

t0

E ∥f(s, xs)− f(s, ys)∥2 ds

+ 5max
{
1, C2

}
(t− t0)C2

∫ t

t0

E ∥g(s, xs)− g(s, ys)∥2 ds

+ 5max
{
1, C2

}
(t− t0)

∫ t

t0

E ∥p(s, xs, u)− p(s, ys, u)∥2 ds

≤ 15C2E ∥ϕ1 − ϕ2∥2 + 15C2LqE ∥x− y∥2t + 15C2LhE ∥ϕ1 − ϕ2∥2

+ 5C2LhE ∥x− y∥2t + 5max
{
1, C2

}
(T− t0)Lf

∫ t

t0

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)C2Lg

∫ t

t0

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)Lp

∫ t

t0

E ∥x− y∥2s ds

≤ 15C2E ∥ϕ1 − ϕ2∥2 [1 + Lh] + 5
[
3C2Lq + C2Lh

]
E ∥x− y∥2t

+ 5max
{
1, C2

}
(T− t0)Lf

∫ t

t0

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)C2Lg

∫ t

t0

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)Lp

∫ t

t0

E ∥x− y∥2s ds

Furthermore,

sup
t∈[t0,T]

E ∥x− y∥2

≤ 15C2E ∥ϕ1 − ϕ2∥2 [1 + Lh] + 5
[
3C2Lq + C2Lh

]
sup

t∈[t0,T]

E ∥x− y∥2t

+ 5max
{
1, C2

}
(T− t0)Lf

∫ t

t0

sup
t∈[t0,T]

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)C2Lg

∫ t

t0

sup
t∈[t0,T]

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)Lp

∫ t

t0

sup
t∈[t0,T]

E ∥x− y∥2s ds

Thus,
sup

t∈[t0,T]

E ∥x− y∥2t ≤ βE ∥ϕ1 − ϕ2∥2
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where,

β =
15C2[1 + Lh]

1−
[
5 [3C2Lq + C2Lh] + 5max(1, C2)(T− t0)2 [Lf + C2Lg + Lp]

]
Given ϵ > 0 choose η = ϵ

β such that E ∥ϕ1 − ϕ2∥2 < η. Then,

∥x− y∥2B ≤ ϵ.

This completes the proof. □

5. An application

The considered NRINSDEs with Poisson jumps is of the form:

d

[
x(t) +

∫ 0

−δ

v1(θ)x(t+ θ)

]
=

[∫ 0

−δ

v2(θ)x(t+ θ)

]
dt+

[∫ 0

−δ

v3(θ)x(t+ θ)

]
dw(t)

+

[∫ 0

−δ

∫
U

v2(θ)x(t+ θ)

]
Ñ(dt, du), t ≥ 0, t ̸= ξk, (4)

x(ξk) = b(k)δkx(ξ
−
k ), k = 1, 2, ..., (5)

x(0) +
n∑

i=1

cix(qi, x) = x0, 0 < q1 < q2 < · · · qp < T. (6)

Let r > 0, u in R-valued stochastic process, ζ ∈ C([−δ, 0],L2(Ω,R)). δk is defined
from Ω to Dk

def.
= (0, dk) for all k = 1, 2, ..., Suppose that δk following Erlang

distribution and δi and δj are independent of each other as i ̸= j for i, j =
1, 2, ...t0 = ξ0 < ξ1 < ξ2 < · · · < ξk < · · · , and ξk = ξk−1 + δk for k = 1, 2, ...
Let w(t) ∈ R is a one-dimensional Brownian motions, where b is a function of k.
v1, v2, v3, v4 : [−δ, 0] → R are continuous functions. Define f : [t0,T] × C → Rd,
g : [t0,T]× C → Rd×m, h : [t0,T]× C → Rd, p : [t0,T]× C× U → Rd, q : C → C
and bk : Dk → Rd×d by

h(t, x(t))(·) =
∫ 0

−r

v1u(t+ θ)dθ(·), f(t, x(t))(·) =
∫ 0

−r

v2u(t+ θ)dθ(·),

g(t, x(t))(·) =
∫ 0

−r

v3u(t+ θ)dθ(·), p(t, x(t))(·) =
∫ 0

−r

v4u(t+ θ)dθ(·),

For x(t+ θ) ∈ C, we suppose that the following conditions hold:

(i).max
i,k


k∏

j=i

E ∥b(j)(τj)∥2
 <∞,
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(ii).

∫ 0

−r

v1(θ)
2dθ,

∫ 0

−r

v2(θ)
2dθ,

∫ 0

−r

v3(θ)
2dθ,

∫ 0

−r

v3(θ)
4dθ <∞.

Suppose the state (i) and (ii) gets satisfied from which we can prove that the
assumptions (H1)-(H5) holds. Thus system (1) has a unique mild solution x and
is stable.
Remark 5.1. If p = 0 in (1), then the system behaves as NRINSDEs of the
form:

d[x(t) + h(t, xt)] = f(t, xt)dt+ g(t, xt)dw(t), t ̸= ξk, t ≥ 0, (7)
x(ξ−k ) = bk(δk)x(ξ

−
k ), k = 1, 2, ..., (8)

x(0) + q(x) = x0 = ϕ, −δ ≤ θ ≤ 0, (9)
By applying Theorem 3.1 under the assumptions (H1)-(H5), then the above
guarantees the existence of the mild solution.

6. Conclusion

This manuscript is devoted to studying the existence, uniqueness, and stabil-
ity of NRINSDEs with Poisson jumps. We proved the existence of mild solutions
to the equation using the Banach fixed point theorem. Then, we proved the sta-
bility via continuous dependence initial value. Further, this result could be
extended to investigate the controllability of random impulsive neutral stochas-
tic differential equations finite/infinite state-dependent delay in the future. The
fractional-order of NRINSDEs with Poisson jumps would be quite interesting.
The controllability of these systems can be studied obviously. Numerical approx-
imation of the given system will lead us to a new direction and be considered
future work.
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