• Title/Summary/Keyword: implicit scheme

Search Result 429, Processing Time 0.026 seconds

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Development of a Three-Dimensional, Semi-Implicit Hydrodynamic Model with Wetting-and-Drying Scheme (조간대 처리기법을 포함한 3차원 Semi-Implicit 수역학모델 개발)

  • Lee, Kyung-Sun;Park, Kyeong;Oh, Jeong-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.70-80
    • /
    • 2000
  • Princeton Ocean Model (POM) is modified to construct a three-dimensional, semi-implicit hydro¬dynamic model with a wetting-and-drying scheme. The model employs semi-implicit treatment of the barotropic pressure gradient terms and the vertical mixing terms in the momentum equations, and the velocity divergence term in the vertically-integrated continuity equation. Such treatment removes the external mode and thus the mode splitting scheme in POM, allowing the semi-implicit model to use a larger time step. Applied to hypothetical systems, both the semi-implicit model and POM give nearly the same results. The semi-implicit model, however, runs approximately 4.4 times faster than POM showing its improved computational efficiency. Applied to a hypothetical system with intertidal flats, POM employing the mode splitting scheme produces noises at the intertidal flats, that propagate into the main channel resulting in unstable current velocities. Despite its larger time step, the semi-implicit model gives stable current velocities both at the intertidal flats and main channel. The semi-implicit model when applied to Kyeonggi Bay gives a good reproduction of the observed tides and tidal currents throughout the modeling domain, demonstrating its prototype applicability.

  • PDF

An Imprevement of the Approximate-Factorization Scheme and Its Application to the Analysis of Incompressible Viscous Flows (근사인자화법의 개량과 비압축성 유동해석에의 응용)

  • 신병록
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1950-1963
    • /
    • 1995
  • A modification of the approximate-factorization method is made to accelerate the convergency rate and to take sufficiently large Courant number without loss of accuracy. And a stable implicit finite-difference scheme for solving the incompressible Navier-Stokes equations employed above modified method is developed. In the present implicit scheme, the volume fluxes with contravariant velocity components and the pressure formulation in curvilinear coordinates is adopted. In order to satisfy the continuity condition completely and to remove spurious errors for the pressure, the Navier-Stokes equations are solved by a modified SMAC scheme using a staggered gird. The upstream-difference scheme such as the QUICK scheme is also employed to the right hand side. The implicit scheme is unconditionally stable and satisfies a diagonally dominant condition for scalar diagonal linear systems of implicit operator on the left hand side. Numerical results for some test calculations of the two-dimensional flow in a square cavity and over a backward-facing step are obtained using both usual approximate-factorization method and the modified one, and compared with each other. It is shown that the present scheme allows a sufficiently large Courant number of O(10$^{2}$) and reduces the computing time.

Step-wise Combinded Implicit/Explicit Finite Element Simulation of Autobody Stamping Processes (차체 스템핑공정을 위한 스텝형식의 내연적/외연적 결함 유한요소해석)

  • Jung, D.W.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.86-98
    • /
    • 1996
  • An combined implicit/explicit scheme for the analysis of sheet forming problems has been proposed in this work. In finite element simulation of sheet metal forming processes, the robustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry and boundary conditions. The implicit scheme dmploys a more reliable and rigorous scheme in considering the equilibrium at each step of deformation, while in the explict scheme the problem of convergency is elimented at thecost of solution accuracy. The explicit approach and the implicit approach have merits and demerits, respectively. In order to combine the merits of these two methods a step-wise combined implici/explicit scheme has been developed. In the present work, the rigid-plastic finite element method using bending energy augmented membraneelements(BEAM)(1) is employed for computation. Computations are carried out for some typical sheet forming examples by implicit, combined implicit/explicit schemes including deep drawing of an oil pan, front fender and fuel tank. From the comparison between the methods the advantages and disadvantages of the methods are discussed.

  • PDF

Development and Performance Evaluation of a Concurrency Control Technique in Object-Oriented Database Systems

  • Jun, Woochun;Hong, Suk-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1899-1911
    • /
    • 2018
  • In this work, we propose a concurrency control scheme in object-oriented database (OODB). Since an OODB provides complex modeling power than the conventional relational databases, a concurrency control technique in OODB is also rather complicated and has influence on the overall performance. Thus, it is very important to develop a concurrency control technique with less overhead. The proposed scheme deals with class hierarchy that is a key concept in OODBs. The proposed scheme is developed on implicit locking scheme. Also, the proposed scheme is designed using data access frequency in order to reduce locking overhead than implicit locking. It means that, if access frequency information is not available, the proposed scheme works just like the existing implicit locking, In our work, the correctness of the proposed scheme is proved. The performance is analyzed depending on access types. Also, it is proved that our scheme performs works much better than the implicit locking does.

AN IMPLICIT NUMERICAL SCHEME FOR SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON CURVILINEAR GRIDS

  • Fayyaz, Hassan;Shah, Abdullah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.881-898
    • /
    • 2018
  • This article deals with implementation of a high-order finite difference scheme for numerical solution of the incompressible Navier-Stokes equations on curvilinear grids. The numerical scheme is based on pseudo-compressibility approach. A fifth-order upwind compact scheme is used to approximate the inviscid fluxes while the discretization of metric and viscous terms is accomplished using sixth-order central compact scheme. An implicit Euler method is used for discretization of the pseudo-time derivative to obtain the steady-state solution. The resulting block tridiagonal matrix system is solved by approximate factorization based alternating direction implicit scheme (AF-ADI) which consists of an alternate sweep in each direction for every pseudo-time step. The convergence and efficiency of the method are evaluated by solving some 2D benchmark problems. Finally, computed results are compared with numerical results in the literature and a good agreement is observed.

Development of a Concurrency Control Technique for Multiple Inheritance in Object-Oriented Databases (객체지향 데이터베이스의 다중계승을 위한 동시성 제어 기법 개발)

  • Jun, Woochun;Hong, Suk-Ki
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.63-71
    • /
    • 2014
  • Currently many non-traditional application areas such as artificial intelligence and web databases require advanced modeling power than the existing relational data model. In those application areas, object-oriented database (OODB) is better data model since an OODB can providemodeling power as grouping similar objects into class, and organizing all classes into a hierarchy where a subclass inherits all definitions from its superclasses. The purpose of this paper is to develop an OODB concurrency control scheme dealing with multiple inheritance. The proposed scheme, called Multiple Inheritance Implicit Locking (MIIL), is based on so-called implicit locking. In the proposed scheme, we eliminate redundant locks that are necessary in the existing implicit locking scheme. Intention locks are required as the existing implicit locking scheme. In this paper, it is shown that MIIL has less locking overhead than implicit locking does. We use only OODB inheritance hierarchies, single inheritance and multiple inheritance so that no additional overhead is necessary for reducing locking overhead.

A Study on Filling Holes of the Polygon Model using Implicit Surface Scheme (음함수 곡면기법을 이용한 폴리곤 모델의 홀메움에 관한 연구)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.107-114
    • /
    • 2005
  • A new approach which combines implicit surface scheme and point projection method is presented in order to fill the arbitrarily shaped holes in the polygon model. In the method a trimmed surface which has an outer boundary curve is generated by using the implicit surface scheme and normal projection of point onto the base surface. The base surface is constructed by creating smooth implicit surface from the incomplete polygon model through which the surface should pass. In this paper an implicit surface is defined by a radial basis function, a continuous scalar-valued function over the domain $R^3$. The base surface is the set of all points at which this scalar function takes on the value zero and is created by placing zero-valued constraints at the vertices of the polygon model. In order to show the validity of the present study, various hole fillings are carried out for the complex polygon model of arbitrary topology.

Development of Optimized Compact Finite Difference Schemes (최적화된 집적 유한 차분법을 위한 내재적 시간전진 기법의 개발)

  • Park N. S.;Kim J. W.;Lee D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.7-12
    • /
    • 1998
  • Optimized high-order compact(OHOC) schemes were proposed, which have high spatial order of truncation and resolution to simulate the aeroacoustic problems due to unsteady compressible flows. Generally, numerical schemes are categorized explicit or implicit by time-marching method. In this research, OHOC differences which were developed with explicit time-marching method is used to have implicit formulation and the implicit OHOC differences result in block hepta-diagonal matrix. This paper presents the comparisons between the explicit and implicit OHOC schemes with a second order accuracy of time in the 1-d linear wave convection problem, and between the explicit OHOC scheme of 4th-order accuracy in time and the implicit OHOC scheme of 1st-order accuracy in tine for the 1-d nonlinear wave convection problem. With these comparisons, the characteristics of implicit OHOC scheme are shown in the point of CFL number.

  • PDF

Robust and Efficient LU-SGS Scheme on Unstructured Meshes: Part I - Implicit Operator (비정렬 격자계에서 강건하고 효율적인 LU-SGS 기법 개발: Part I - 내재적 연산자)

  • Kim Joo Sung;Kwon Oh Joon
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.26-38
    • /
    • 2004
  • A study has been made for the investigation of the robustness and convergence of various implicit operators of the LU-SGS scheme using linear stability analysis. It is shown that the behavior of the implicit operator is not determined by its own characteristics, but is determined relatively depending on the dissipative property of the explicit operator. It is also shown that, as the dissipation level of the implicit operator increases, the robustness of the scheme increases, but the convergence rate can be deteriorated due to the excessive dissipation. The numerical results demonstrate that the dissipation level of the impliict operator needs to be higher than that of the explicit operator for computing stiff problems.