
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, Apr. 2018 1899

Copyright ⓒ 2018 KSII

A preliminary version of this paper was presented at APIC-IST 2017, and was selected as an outstanding paper.

http://doi.org/10.3837/tiis.2018.04.028 ISSN : 1976-7277

Development and Performance Evaluation
of a Concurrency Control Technique in

Object-Oriented Database Systems

Woochun Jun
1

1Department of Computer Education, Seoul National University of Education

Seoul, Korea

[e-mail: wocjun@snue.ac.kr]

Suk-Ki Hong
2

2
Department of Business Administration, Dankook University

 Yongin, Korea

[e-mail: skhong017@dankook.ac.kr]

*Corresponding author: Suk-Ki Hong

Received October 19, 2017; revised February 19, 2017; accepted March 14, 2017;

published April 30, 2018

Abstract

In this work, we propose a concurrency control scheme in object-oriented database (OODB).

Since an OODB provides complex modeling power than the conventional relational databases,

a concurrency control technique in OODB is also rather complicated and has influence on the
overall performance. Thus, it is very important to develop a concurrency control technique

with less overhead. The proposed scheme deals with class hierarchy that is a key concept in

OODBs. The proposed scheme is developed on implicit locking scheme. Also, the proposed
scheme is designed using data access frequency in order to reduce locking overhead than

implicit locking. It means that, if access frequency information is not available, the proposed

scheme works just like the existing implicit locking, In our work, the correctness of the

proposed scheme is proved. The performance is analyzed depending on access types. Also, it
is proved that our scheme performs works much better than the implicit locking does.

Keywords: Object-oriented Database, Concurrency Control, Performance Evaluation,

Multimedia, Class Hierarchy

1900 Jun and Hong; Development and Performance Evaluation of a Concurrency

 1. Introduction

OODBs have been used for many non-traditional application areas like multimedia

databases and geographic information systems. These applications need more complicated

modeling power for expressing complex relationships among data. In OODB, transactions can

access data objects by invoking methods. Usually transaction consists of a series of method

invocations on data objects [1,2]. It is essential to provide an effective transaction management

scheme in which more transactions concurrently.

Concurrency control is a technique that is used to maintain database consistency [3,4].

Concurrency control in OODBs is more complicated than concurrency control schemes

traditional relational databases due to the following reason[5,6]. The typical OODBs has so

called class hierarchy(also called inheritance hierarchy). In class hierarchy, a class can inherit

the definitions of its super class. Also, instances of a class object belong to instances of its

super classes [7,8,9]. In OODBs, there are two different types of access on objects: instance

object access and class definition object access [1]. Also, there are two access types accessing

for more than one class objects: class definition update and IIH (Instance Access to Inheritance

Hierarchy) [7,10]. A query is a typical example of IIH.

For convenience, we call MCR (Multi-Class Request) for class definition change and IIH,

and OCR (One-Class Request) for accesses like class definition access and instance access to

only one class. In the literature, there are two locking-based concurrency control schemes for

class hierarchy: explicit locking [1,11] and implicit locking [4,5,7,12].

The purpose of this paper is to develop concurrency control scheme for class hierarchy.

This paper is organized as follows. In Chapter 2, the existing approaches for dealing with

inheritance hierarchy are discussed. In Chapter 3, a new scheme is proposed. In Chapter 4, we

present performance analysis of the proposed scheme. In Chapter 5, the correctness of the

proposed scheme is discussed. Finally, conclusions and further research issues are discussed in

Chapter 6.

2. Literature Review

2.1 Background
In explicit locking, for each MCR access, a lock is needed not only a class, say A, but also

on every sub class of A through inheritance hierarchy. For each OCR, a lock is only necessary

for a class being accessed. Thus, for an MCR, an access to a leaf class will requires less locks

than a class close to the root. In the meanwhile, the explicit locking requires more locks for an

access to a class close to the root.

On the other hand, in implicit locking, a lock on a class A requires intention locks on super

classes through inheritance hierarchy as well as lock on class A [4]. An intention lock on class

means that possible locks will be set on a sub class. With aid of an intention lock, an MCR

access to classes on inheritance hierarchy may find conflict earlier. However, due to

inheritance hierarchy, implicit locking requires more locks for access to class close to leaf

class.

For example, consider the inheritance hierarchy in Fig. 2. Orion [5] and O2 [1], are used

for the explanation of two locking schemes. In Fig. 1.a, for an access to class E, each

technique works as follows. For implicit locking, intention locks IWs for W (Write) locks need

to be set for all classes from E to the root A. Thus, any MCR access on super classes of E can

find conflict on root A. In the meanwhile, an explicit locking requires a Cw (Class Definition

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1901

Change) lock on subclasses of E as well as class E. Also, locking for a query on C can be done

as in Fig. 1.b.

Implicit locking in Orion Explicit locking in O2

 IW lock A

 
 IW lock B

 
 IW lock C

 
 IW lock D

 

 W lock E Cw lock

 

 F Cw lock

Fig. 1.a. Locking for class definition change in Orion and O2

Implicit locking in Orion Explicit locking in O2

 IR lock A

 

IR lock B



R lock C IR lock

 
 D IR lock

 
 E IR lock

 
F IR lock

Fig. 1.b. Locking for query in Orion and O2

2.2. Related Works
There are some research works for concurrency control techniques to reduce locking

overhead for class hierarchy in OODBs as follows.
In [13], for class hierarchy with multiple inheritance , it is shown that some redundant

locks can be reduced without affecting the consistency of the database. The proposed scheme,

called Multiple Inheritance Implicit Locking (MIIL), is based on so-called implicit locking.
The proposed scheme can eliminate redundant locks that are necessary in the existing implicit

locking scheme. Intention locks are required as the existing implicit locking scheme. In this

paper, it is shown that MIIL has less locking overhead than implicit locking does. In their work,
only structural information such as OODB inheritance hierarchies, single inheritance and

multiple inheritance are used. It means that no additional overhead is necessary for reducing

1902 Jun and Hong; Development and Performance Evaluation of a Concurrency

locking overhead.

Concurrency control techniques dealing with class hierarchy using access frequency
information are proposed in [14,15]. In [14], the proposed technique is based on implicit

locking so that some intention locking overhead can be reduced by locking on frequently

access classes intead of locking on every superclass of a class to be accessed. In the meanwhile,
in [15], a concurrency control scheme is proposed to reduce locking overhead. The proposed

scheme is based on explicit locking. In the proposed, using access frequency information, the

proposed scheme can reduce locking overhead than the existing explicit locking.

3. Development of a New Concurrency Control Scheme

3.1 The Proposed Locking Scheme

The proposed scheme is based on implicit locking. The basic idea is that, in the proposed

scheme, intention locks are not set on all of the super classes of a target class that is a class to

be accessed. That is, some super classes need not be locked. Note that, in implicit locking,

every superclass of a target class has an intention lock through the superclass chain. We adopt

a concept called FA (Frequently Accessed) class. Roughly, a FA class is a class that needs an

intention lock. For an OODB, how to determine if a class is an FA class or not is discussed in

next section.

Assume that a lock is requested on class A. The proposed scheme works as follows. For

simplicity, strict two-phase locking [3,4] is adopted.

(Step 1) Check conflict and set lock on a target class

(Step 2) Set locks on classes until the first FA class through superclass chain

•From class A to the first FA class through the superclass chain, set an intention lock on each

class.

•If the class A is a FA class, do nothing.

(Step 3) Set an intention lock on each FA class through superclass chain

(Step 4) Set lock on each subclass of A that has more than one parent superclass.

// Deal the multiple inheritance case //

For instance, consider the inheritance hierarchy as in Figure 2.a. Assume that FA classes

are Cl, C4, C7, and C10, respectively. Also, assume that locks are requested by two

transactions TA and TB as follows.

1) TA: Access on class C7

2) TB: Access on class C9

Assume that Li denotes locks by transaction i. As in Fig 2.b and 2.c, 16 locks and 8 locks

are required for TA and TB by the implicit locking and the proposed scheme, respectively.

C1 C1:L1;L2 C1(FA):L1;L2

  
C2 C2:L1;L2 C2

  

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1903

C3 C3:L1;L2 C3

  

C4 C4:L1;L2 C4(FA):L1;L2

  
C5 C5:L1;L2 C5

  
C6 C6:L1;L2 C6

  

C7 C7:L1;L 2 C7(FA):L1;L2

  
C8 C8:L2 C8: L2

  

C9 C9:L2 C9: L2

  

C10 C10 C10(FA)

  
C11 C11 C11

  
 C12 C12 C12

Fig 2.a. Fig. 2.b. Fig. 2.c.

Inheritance Hierarchy Implicit Locking The Proposed Locking

 In the literature, the concurrency control techniques for class hierarchy in [14,15] are also

based on access frequency for class hierarchy. However, the proposed technique in this work is

different as follows. At first, in [14], in order for the technique to reduce locking overhead,

more specific locking modes need to be defined depending on conflict modes. However, the

proposed technique in the paper does not require any special locking modes other than locking

mode in Orion[5]. Also, the technique in [15] is based on explicit locking. It means that the

technique is proposed to reduce locking overhead than the existing explicit locking technique.

3.2 FA Class Assignment Technique

In the proposed scheme, the following FA class assignment scheme is adopted. Assume that

access frequency ratio to each class is constant, the FA class assignment scheme is constructed

as follows.

Step 1)

A root class is assigned FA class.

Step 2)

// Start from each leaf class //

For each class A whose subclasses are already determined,

-calculate the number of locks (NA) if A is assigned as FA class

-calculate the number of locks (NB) if A is assigned not assigned as FA class

1904 Jun and Hong; Development and Performance Evaluation of a Concurrency

Step 3)

The class A becomes FA class only if NA< NB

For example, consider a simple single inheritance hierarchy as in Figure 3.a and assume

access frequency information on each class as in Figure 3b. Note that, based on the proposed

concurrency control scheme, a root class is assigned as FA class automatically so that we do

not need access frequency on the root class.

C5 C5;FA

 

C4 C4 : 200 C4

 

C3 C3 : 800 C3: FA

 

C2 C2 : 100 C2: FA

 
C1 C1: 300 C1:

Fig. 3.a. Fig. 3.b. Fig. 3.c.

An inheritance Access FA assignment result

hierarchy frequency

For class C1, since it is a leaf class, regardless of its access frequency, it is assigned non-FA

class. For class C2, if it is assigned FA class, the total number of locks required is 1,100 (900

locks by C1 and 200 locks by C2) since a transaction accessing C1 needs 300 locks each on C1,

C2, and C5, respectively and a transaction accessing C2 needs 100 locks each on C2 and C5,

respectively. On the other hand, if it is not assigned FA class, the total number of locks is 1,900

(1,500 locks by C1 and 400 locks by C2) since a transaction accessing C1 needs 300 locks each

on every class and a transaction accessing C2 needs 100 locks each on C2, C3, C4, and C5,

respectively. Thus, the class C2 becomes a FA class.

For class C3, if it is assigned FA class, the total number of locks is 3,100 locks (1,200 locks

by C1, that is, 300 locks each on C1, C2, C3, and C5 and 300 locks by C2, that is, 100 locks each

on C2, C3, and, C5, and 1,600 locks by C3, that is, 800 locks each on C3 and C5).

In the meanwhile, if it is not assigned FA class, the total number of locks is 3,500 locks

(900 locks by C1, that is, 300 locks each on C1, C2, and C5 and 200 locks by C2, that is, 100

locks each on C2 and C5 and 2,400 locks by C3, that is, 800 locks each on C3, C4, and C5). Thus,

the class C3 becomes a FA class.

For class C4, if it is assigned FA class, the total number of locks is 4,700 (1,500 locks by C1,

that is, 300 locks each on C1, C2, C3, C4, and C5, and 400 locks by C2, that is, 100 locks each on

C2, C3, C4, and C5, and 2,400 locks by C3, that is, 800 locks each on C3, C4, and C5 and 400

locks by C4, that is, 200 locks each on C4, and C5). If it is not assigned FA class, the total

number of locks is 3,500 (1,200 locks by C1, that is, 300 locks each on class C1, C2, C3, and C5

and 300 locks by C2, that is, 100 locks each on C2, C3, and C5, and 1,600 locks by C3, that is,

800 locks each on class C3 and C5, and 400 locks by C4, that is, 200 locks each on class C4 and

C5). Finally, the class C4 becomes non-FA class. The final results of FA assignment are shown

in Fig. 3.c.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1905

Let’s consider the following example as in Figure 4. The inheritance hierarchy in Figure 4.a

is same as in Fig. 3.a. Assuming that access frequency information for each class is given as in

Figure 4.b. The class C1 becomes non-FA class by our FA assignment scheme. For class C2, if

it is assigned FA class, the total number of locks is 500 (300 locks by C1, that is, 100 locks each

on class C1, C2, and C5, and 200 locks by C2, that is, 100 locks on C2 and C5). If C2 is not

assigned FA class, the total number of locks is 900 (500 locks by C1, that is, 100 locks each on

C1, C2, C3, C4, and C5, and 400 locks by C2, that is, locks each on C2, C3, C4, and C5). This

means that C2 becomes FA class.

For class C3, if it is assigned FA class, the total number of locks is 900 locks (400 locks by

C1, that is, 100 locks each on C1, C2, C3, and C5 and 300 locks by C2, that is, 100 locks each on

class C2, C3, and C5, and 200 locks by C3, that is, 100 locks each on class C3 and C5). In the

meanwhile, if it is not assigned FA class, the total number of locks is 800 locks (300 locks by

C1, that is, 100 locks each on class C1, C2, and C5, and 200 locks by C2, that is, 100 locks each

on class C2 and C5, and 300 locks by C3, that is, 100 locks each on class C3, C4, and C5). Thus,

the class C3 becomes non-FA class.

For class C4, if it is assigned FA class, the total number of locks is 1,200 (400 locks by C1,

that is, 100 locks each on class C1, C2, C4, and C5, and 300 locks by C2, that is, 100 locks each

on class C2, C4, and C5, and 300 locks by C3, that is, 100 locks each on class C3, C4, and C5, and

200 locks by C4, that is, 100 locks each on class C4 and C5). If it is not assigned FA class, the

total number of locks is 1,000 (300 locks by C1, that is, 100 locks each on class C1, C2, and C5,

and 200 locks by C2, that is, 100 locks each on class C2 and C5, and 300 locks by C3, that is,

100 locks each on class C3, C4, and C5, and 200 locks by C4, that is, 100 locks each on class C4

and C5). Finally, the class C4 becomes non-FA class.

The final results of FA assignment are shown in Fig. 4.c.

C5 C5;FA

 
C4 C4 : 100 C4

 
C3 C3 : 100 C3:

 
C2 C2 : 100 C2: FA

 

C1 C1: 100 C1:

Fig. 4.a. Fig.4.b. Fig.4.c.

An inheritance hierarchy Access frequency FA Assignment result

4. Performance Analysis of the Proposed Scheme

In this Section, we present performance analysis of the proposed scheme. We classify the

performance of the proposed scheme into 3 categories, the worst case, the average case, and

the best case, respectively.

4.1 The Worst Case

The worst case of the performance means that the proposed scheme works just the existing

1906 Jun and Hong; Development and Performance Evaluation of a Concurrency

implicit locking. Alternately, it means two following cases.

Case 1) There is no FA class except the root.

C5 C5(FA)

 
C4 C4

 
C3 C3

 

C2 C2

 

C1 C1

Fig. 5.a. Fig. 5.b.

An inheritance hierarchy FA assignment result

In this case, the proposed scheme works the implicit locking no matter what kinds of accesses

to the given inheritance hierarchy. This is the case that, for an inheritance hierarchy in Fig. 5.a,

and FA assignment as shown in Fig. 5.b, the proposed scheme works as in the implicit locking.

Case 2) All accesses are on the classes before the second FA class.

As in case 1) above, the proposed scheme works as in the implicit locking. Consider the

following Fig. 6.

C6 C6(FA)

 
C5 C5

 
C4 C4

 
C3 C3

 
C2 C2(FA)

 
C1 C1

Fig. 6.a. Fig. 6.b.

An inheritance hierarchy FA assignment result

For an inheritance hierarchy in Fig. 6.a, assuming FA assignment as in Fig. 6.b, if all

accesses to the inheritance hierarchy are on class C3, C4, and C5, the proposed scheme works as

in the implicit locking

4.2 The Average Case

The average case means that there are some FA classes in the inheritance hierarchy and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1907

accesses are distributed evenly all over the inheritance hierarchy. Consider the following

inheritance hierarchy(Fig. 7.a) and FA assignment(Fig. 7.b).

For simplicity, assume that there is only access to each class. In this case, the total number of

locks required for the implicit locking and the proposed scheme are as follows.

-Number of locks for the implicit locking: 21

-Number of locks for the proposed scheme: 15

The number of locks required for the implicit locking varies depending on the class to be

accessed. That is, for an access to a class near the root, it has fewer locks. However, for an

access to a class near the leaf, it induces more locking overhead.

On the other hand, the number of locks required for the proposed scheme varies depending

on the number of FA classes as well as the class to be accessed. As in the implicit locking, for

an access to a class near the root, it induces fewer locks. For an access to a class near the leaf,

it induces more locking overhead. However, in this case, the proposed scheme needs fewer

locks than the implicit locking does.

C6 C6(FA)

 
C5 C5

 
C4 C4(FA)

 
C3 C3

 
C2 C2(FA)

 
C1 C1

Fig. 7.a. Fig. 7.b.

An inheritance hierarchy FA assignment result

4.3 The Best Case

The best case means that every access is on the second FA class in the inheritance hierarchy. In

this case, only 2 locks are required no matter what the number of classes in the inheritance

hierarchy. Consider the following inheritance hierarchy(Fig. 8.a) and FA assignment(Figure

8.b).

For the FA assignment as in Figure 8.b, there is only one access to a class C1 that is a leaf.

Then the number of locks required for the implicit locking and the proposed locking are as

follows.

-Number of locks for the implicit locking: 8

1908 Jun and Hong; Development and Performance Evaluation of a Concurrency

-Number of locks for the proposed scheme: 2

According to the above 3 cases(the worst case, the average case, and the best), we can

conclude that the proposed scheme works better than the existing implicit locking for an

access to a class near the leaf and the second FA class near the leaf.

C8 C8(FA)

 
C7 C7

 
C6 C6

 
C5 C5

 
C4 C4

 
C3 C3

 

C2 C2

 

C1 C1(FA)

Fig. 8.a. Fig. 8.b.

An inheritance hierarchy FA assignment Result

5. Correctness of the Proposed Scheme

In this section, we show that the proposed scheme performs better than the implicit locking

scheme. Since the proposed scheme requires less or equal number of locks than implicit

locking for any access, we show that the proposed scheme is correct by showing that any

possible conflict is detected by the proposed scheme.

Claim: The proposed scheme detects any conflicts between a lock requester (LR) and a

lock holder (LH).

Proof:

There are 4 cases for access types of LR and LH,

Case 1)

-Access by LH: SCR

-Access by LR: SCR

If LH and LR are accessing different classes, there is no conflict. IF LH and LR are accessing

the same target class, any conflicts can be detected on class.

Case 2)

-Access by LH: SCR

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1909

-Access by LR: MCR

 FA1  FA1

 

 

 

 FA2 FA2

 CLR 

 FA3  FA3

 

 

 FA4  FA4

  CLR

 CLH  CLH

Fig. 9.a. case 2.1 Fig. 9.b. case 2.2

Let CLR and CLH be two target classes for LR and LH, respectively. If CLH is a superclass of

CLR, there is no conflict since LR does not access CLH. If CLH is a subclass of CLR, then there are

two further cases. If there is a FA class that is a superclass of both CLR and CLH, then possible

conflicts are detected on the first FA class through the superclass chain of LR (case 2.1). For

instance, assume that there is an inheritance hierarchy with four FA classes as in Fig. 9.a.

In Fig. 9.a, the possible conflicts are detected on FA2 since both LR and LH must have

locks on FA2. In the meanwhile, if there is no such FA class between CLR and CLH as in Fig. 9.b.

(case 2.2), the possible conflict is detected on CLR since LH must have an intention lock on

CLR.

Case 3)

-Access by LH: MCR

-Access by LR: SCR

If the CLH is a subclass of the CLR, there is no conflict. If CLH is a superclass of CLR, then

there are two further cases in which conflicts will be detected. If there is at least a FA class that

is the first superclass of both CLR and CLH as in Fig. 10.a, then conflict is detected on a FA2.

(case 3.1). This is because LH and LR must a lock on the FA2 according to rules of the

1910 Jun and Hong; Development and Performance Evaluation of a Concurrency

proposed scheme. Otherwise (that is, there is no such FA class between CLH and CLR as in Fig.

10.b), the conflict is detected on CLH since CLR must set an intention lock on CLH(case3.2).

 FA1  FA1

  CLH

  CLR

 

 FA2  FA2

 CLH 

 FA3  FA3

 

 

 FA4  FA4

 CLR 

Fig. 10.a. case 3.1 Fig. 10.b. case 3.2

6. Conclusions and Further Research Works

OODBs have many non-traditional applications since they have higher modeling power

than traditional relational databases. For many and various users, performance evaluation

issue is very important. A concurrency control scheme is the one of key factors for determining

overall performance evaluation in database systems.

In this paper, a class hierarchy concurrency control scheme is proposed. It is developed to

reduce locking overhead for access to inheritance hierarchy. Using data access frequency, the

proposed concurrency control scheme induces fewer locks than the implicit locking scheme.

We also prove that the proposed concurrency control scheme needs fewer locks than the

implicit locking.

 Our future research goal is to propose a comprehensive scheme that combine inheritance

hierarchy with composite object hierarchies. Also, we have a plan to do intensive simulation

work for performance evaluation of our work.

References

[1] M. Cart and J. Ferrie, “Integrating Concurrency Control into an Object-Oriented Database System,”

in Proc. of 2nd Int. Conf. on Extending Data Base Technology, Venice, Italy, pp. 363-377, 1990.
Article (CrossRef Link)

[2] V. Geetha and N. Sreenath, Semantic “Concurrency Control on Continuously Evolving OODBMS
Using Access Control Lists,” in Proc. of 9th International Conference on Distributed Computing
and Internet Technology, Bhubaneswar, India,pp. 523-534, 2013. Article (CrossRef Link)

[3] P. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.

http://dx.doi.org/10.1007/BFb0022183
http://dx.doi.org/10.1007/978-3-642-36071-8_42

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018 1911

[4] H. Korth and A. Silberschartz, Database System Concepts, 2nd Edition, McGraw Hill, 1991.
[5] J. Garza and W. Kim, “Transaction Management in an Object-Oriented Database Systems,” in Proc.

of ACM SIGMOD Int. Conf. on Management of Data,pp. 37-45, 1988. Article (CrossRef Link)
[6] V. Geetha, “Semantic Based Concurrency Control in OODBMS,” in Proc. of 2011 International

Conference on Recent Trends in Information Technology, Chennai, India, pp. 1313-1318, 2011.
Article (CrossRef Link)

[7] W. Kim, Introduction to Object-Oriented Databases, The MIT Press, Cambridge, MA, USA, 1990.
[8] R. Wazlawick, “Object-Oriented Analysis and Design for Information Systems,” Morgan Kaufman,

Burlington, MA, USA, 2014.
[9] G. Blokdyk, Object-oriented Analysis Complete Self-Assessment Guide, Createspace Independent

Pub, North Charleston, SC, USA, 2017.
[10] J. Garza and W. Kim, “Transaction Management in an Object-Oriented Database Systems,” in Proc.

of ACM SIGMOD Int. Conf. on Management of Data,pp. 37-45,1988. Article (CrossRef Link)
[11] C. Malta and J. Martinez, “Automating Fine Concurrency Control in Object-Oriented Databases,”

in Proc. of 9th IEEE Conf. on Data Engineering, Vienna, Austria, pp. 253-260, 1993.
Article (CrossRef Link)

[12] S. Lee and R. Liou, “A Multi-Granularity Locking Model for Concurrency Control in
Object-Oriented Database Systems,” IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No.
1, pp. 144-156, 1996. Article (CrossRef Link)

[13] W. Jun and S. Hong, “Development of a Concurrency Control Technique for Multiple Inheritance
in Object-Oriented Databases,” Journal of Internet Computing and Services, Vol. 15, No. 1, pp.
63-71, 2014. Article (CrossRef Link)

[14] W. Jun and L. Gruenwald, “An Effective Class Hierarchy Concurrency Control Technique in
Object-Oriented Database Systems,” Journal of Information and Software Technology, Vol. 40, No.
1, pp. 45-53, 1998. Article (CrossRef Link)

[15] W. Jun and L. Gruenwald, “An Optimal Locking Scheme in Object-Oriented Database Systems,”
International Conference on Web-Age Information Management, Shanghai, China, pp. 95-105,
2000. Article (CrossRef Link)

 Woochun Jun is a professor in Dept. of Computer Education at Seoul National

University of Education, Seoul, Korea. He received Ph.D. degree in Computer
Science from University of Oklahoma, USA in 1997. He also received a Master's

degree and BS degree in Computer Science from Sogang University, Seoul, Korea, in
1987 and 1985, respectively. His research areas include information education,
information communication ethics, and gifted education in IT.

Suk-Ki Hong is a professor in the Department of Business Administration,

Dankook University, Gyeonggi-do, Korea. He received Ph.D. from the University of
Nebraska-Lincoln, USA, in 1996. His main research interests are e-Learning,
e-Business, e-Service, Service Quality, SCM, and IT Strategies.

http://dx.doi.org/10.1145/971701.50206
http://dx.doi.org/10.1109/ICRTIT.2011.5972309
http://dx.doi.org/10.1145/971701.50206
http://dx.doi.org/10.1109/ICDE.1993.344057
http://dx.doi.org/10.1109/69.485643
http://dx.doi.org/10.7472/jksii.2014.15.1.63
http://dx.doi.org/10.1016/S0950-5849(98)00031-7
http://dx.doi.org/10.1007/3-540-45151-X_9

