• 제목/요약/키워드: immune activation

검색결과 947건 처리시간 0.03초

The effect of rosehip extract on TNF-α, IL-1β, and IL-8 production in THP-1-derived macrophages infected with Aggregatibacter actinomycetemcomitans

  • Song, Yuri;Kim, Si young;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제47권1호
    • /
    • pp.1-8
    • /
    • 2022
  • Inflammation is a protective mechanism against pathogens, but if maintained continuously, it destroys tissue structures. Aggregatibacter actinomycetemcomitans is a gram-negative, facultative anaerobic bacterium often found in severe periodontitis. A. actinomycetemcomitans invades epithelial cells and triggers inflammatory response in the immune cells. In this study, we investigated the effect of water-soluble rosehip extract on A. actinomycetemcomitans-induced inflammatory responses. A human monocytic cell line (THP-1) was differentiated to macrophages by phorbol 12-mystristate 13-acetate treatment. The cytotoxic effect of extract was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effects of extract on bacterial growth were examined by measuring the optical densities using a spectrophotometer. THP-1-derived macrophages were infected A. actinomycetemcomitans after extract treatment, and culture supernatants were analyzed for cytokine production using enzyme-linked immunosorbent assay. Protein expression was measured by western blotting. Extract was not toxic to THP-1-derived macrophages. A. actinomycetemcomitans growth was inhibited by 1% extract. The extract suppressed A. actinomycetemcomitans-induced tumor necrosis factor-α, interleukin (IL)-1β, and IL-8 production. It also decreased mitogen-activated protein kinase (MAP kinase) and nuclear factor-κB (NF-κB) phosphorylation. Moreover, the extract inhibited the expression of inflammasome components, including nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3, Absent in Melanoma 2, and apoptosis associated speck-like protein containing a CARD. And cysteine-aspartic proteases-1 and IL-1β expression were decreased by the extract. In summary, extract suppressed A. actinomycetemcomitans growth and decreased inflammatory cytokine production by inhibiting activation of MAP kinase, NF-κB, and inflammasome signaling. Rosehip extract could be effective in the treatment of periodontal inflammation induced by A. actinomycetemcomitans infection.

New therapeutic approach with extracellular vesicles from stem cells for interstitial cystitis/bladder pain syndrome

  • Dayem, Ahmed Abdal;Song, Kwonwoo;Lee, Soobin;Kim, Aram;Cho, Ssang-Goo
    • BMB Reports
    • /
    • 제55권5호
    • /
    • pp.205-212
    • /
    • 2022
  • Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development.

현삼(玄蔘) 추출물이 RBL-2H3 비만세포에서 β-hexosaminidase 및 cytokine 분비에 미치는 효과 (Inhibitory Effects of Scrophulariae Radix on β-hexosaminidase release and cytokine production in RBL-2H3 cells)

  • 김세기
    • 대한본초학회지
    • /
    • 제32권6호
    • /
    • pp.9-15
    • /
    • 2017
  • Objectives : Traditional medicines isolated from natural products often have positive effects in the prevention and healing of various immune disorders, such as allergy and atopic inflammation. Scrophulariae Radix (SR) been used in oriental medicine used for treatment of acute and chronic inflammatory diseases. Mast cells are known to play important roles in the initiation of allergic reactions. In this study, we investigated the effects of SR ethanol extract on inflammatory responses in IgE-stimulated RBL-2H3 mast cells. Methods : Rat basophilic leukemia RBL-2H3 cells were purchased from Korean Cell Line Bank (KCLB No. 22256). Cell viability was measured by MTT assay. Assays for ${\beta}-Hexosaminidase$ Secretion : RBL-2H3 cells were sensitized with dinitrophenyl-ImmunoglobulinE (DNP IgE). The next antigen DNP-BSA ($25ng/m{\ell}$) was added for 10 minutes and the reaction was terminated after 5 minutes in the ice bath. To determine ${\beta}-Hexosaminidase$ release, supernatants were aliquoted into 96-well plates. Samples were mixed with substrate solution and incubated for 1 h at $37^{\circ}C$. Absorbance was measured with a spectrophotometer at 405 nm. IL-4 and tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) concentrations in cell culture supernatants were measured using enzyme-linked immunosorbent assay (ELISA) kits. Results : The cytotoxicity of SRE in RBL-2H3 cells was less than 5%. SRE inhibited DNP-IgE-imduced degranulation of mast cells in RBL-2H3 cells. Also significantly decreased the levels of inflammatory cytokine, IL-4 and TNF-alpha. In this study, the SRE showed potential anti-allergic and antiinflammatory. Conclusions : These results indicate that SRE could be inhibit the allergic response through suppressing the mast cell activation.

Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway

  • Jin, Xiaohui;Yuan, Yixin;Zhang, Chi;Zhou, Yong;Song, Yue;Wei, Zhanyong;Zhang, Gaiping
    • Journal of Veterinary Science
    • /
    • 제21권3호
    • /
    • pp.50.1-50.16
    • /
    • 2020
  • Background: Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6. Objectives: Herein, the purpose of this study is to determine whether the non-structural protein NS1 of PPV also has the same function. Methods: Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, western blot, immunofluorescence assay and small interfering RNA (siRNA) were used. Results: Our findings demonstrated that PPV NS1 protein can up-regulate the expression levels of IL-6 and tumor necrosis factor-alpha in a dose-dependent manner. Moreover, PPV NS1 protein was found to induce the phosphorylation of IκBα, then leading to the phosphorylation and nuclear translocation of NF-κB. In addition, the NS1 protein activated the upstream pathways of NF-κB. Meanwhile, TLR2-siRNA assay showed TLR2 plays an important role in the activation of NF-κB signaling pathway induced by PPV-NS1. Conclusions: These findings indicated that PPV NS1 protein induced the up-regulated of IL-6 expression through activating the TLR2 and NF-κB signaling pathways. In conclusion, these findings provide a new avenue to study the innate immune mechanism of PPV infection.

Can Panax ginseng help control cytokine storm in COVID-19?

  • Choi, Jong Hee;Lee, Young Hyun;Kwon, Tae Woo;Ko, Seong-Gyu;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.337-347
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.

소자도담강기탕(蘇子導痰降氣湯)의 호흡기 염증 완화효과 (Relieving effect for respiratory inflammation of Sojadodamgangki-tang)

  • 한윤지;선창우;우연주;이동혁;서진우;유준상;김주희;권보인
    • 대한예방한의학회지
    • /
    • 제27권2호
    • /
    • pp.23-33
    • /
    • 2023
  • Objectives : Sojadodamgangki-tang and its main components are traditional korean medicinal methods for treatment of cough, sputum and dyspnea. Using a respiratory inflammatory model, we intend to reveal the anti-inflammatory effect and its immune mechanism of Sojadodamgangki-tang. Methods : We used a papain-induced respiratory inflammatory mouse model. 8-week-old female BALB/C mice were divided into 3 groups as follows: the following groups: saline control group, papain treated group (vehicle), papain and Sojadodamgangki-tang(200 mg/kg) treated group (n=4). To evaluate the anti-inflammatory effect of Sojadodamgangki-tang extracts, inflammatory cell infiltration was measured in bronchoalveolar lavage fluid (BALF) and nasal lavage fluid (NALF). In addition, the effects of Sojadodamgangki-tang extracts on Th2 cell population in lung were determined by using flow cytometry. Results : Sojadodamgangki-tang extracts administration reduced inflammatory cell infiltration in BALF and NALF, especially of eosinophils. Furthermore, total immunogloblin (Ig)-E levels was reduced in BALF and serum by drug administration. Interestingly, Sojadodamgangki-tang extracts treatment also decreased the Th2 cell (CD4+GATA3+) population in lung. Conclusions : Our findings indicate Sojadodamgangki-tang extracts have anti-inflammatory effects by mediating Th2 cell and B cell activation.

온도 및 염분 등의 환경요인이 참돔(Pagrus major)의 Interleukin-1 Receptor Accessory Protein 발현에 미치는 영향 (Effects of Environmental Factors Such as Temperature and Salinity on Expression of Interleukin-1 Receptor Accessory Protein in the Red Seabream (Pagrus major))

  • 강한승;민병화
    • 한국해양생명과학회지
    • /
    • 제2권2호
    • /
    • pp.70-74
    • /
    • 2017
  • IL-1RAcP는 일명 interleukin-1 receptor accessory protein이라 칭하며 interleukin-1 염증성 사이토카인과 interleukin-1 receptor I (IL-1RI) 결합체와 복합체를 형성하여 작용한다. IL-1RAcP는 면역반응, 스트레스 및 세포사멸과 관련이 있다. 본 연구의 목적은 참돔(Pagrus major)을 저수온(8℃, 33 psu) 및 저염분(20℃, 10 psu) 상태에 노출시킨 후, IL-1RAcP 유전자의 발현을 관찰하는 것이다. 연구결과, IL-1RAcP 유전자의 발현은 저수온(8℃, 33 psu) 및 저염분(20℃, 10 psu) 상태에서 유의적으로 증가하는 것으로 나타났다. 이 연구결과로서 IL-1RAcP 유전자는 저수온 및 저염분 등의 환경 스트레스에 대한 생체지표유전자로서 역할을 한다고 제의한다.

MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction

  • Chuang Sun;Wei Li;Yanhong Li;Jian Chen;Huixian An;Guangwei Zeng;Tingting Wang;Yazhou Guo;Changying Wang
    • IMMUNE NETWORK
    • /
    • 제22권6호
    • /
    • pp.49.1-49.15
    • /
    • 2022
  • Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI, while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore, we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed, which were subjected to exosome treatment. The expression of inflammatory factors, heart function, and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition, they promoted heart function, suppressed inflammatory responses, and de-activated TLR4/NF-κB signaling pathway in MI mice. In conclusion, miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4.

CD103+ Cells and Chemokine Receptor Expression in Breast Cancer

  • Eun-Hye Seo;Ga-Yun Song;Chung-Sik Oh;Seong-Hyop Kim;Wan-Seop Kim;Seung-Hyun Lee
    • IMMUNE NETWORK
    • /
    • 제23권3호
    • /
    • pp.25.1-25.15
    • /
    • 2023
  • Mucosal environments harbour lymphocytes, which express several adhesion molecules, including intestinal homing receptors and integrin αE/β7 (CD103). CD103 binds E-cadherin, an integrin receptor expressed in intestinal endothelial cells. Its expression not only enables homing or retention of T lymphocytes at these sites but is also associated with increased T lymphocyte activation. However, it is not yet clear how CD103 expression is related to the clinical staging of breast cancer, which is determined by factors such as the size of the tumor (T), the involvement of nearby lymph nodes (N), and presence of metastasis (M). We examined the prognostic significance of CD103 by FACS in 53 breast cancer patients and 46 healthy controls enrolled, and investigated its expression, which contributes to lymphocyte recruitment in tumor tissue. Patients with breast cancer showed increased frequencies of CD103+, CD4+CD103+, and CD8+CD103+ cells compared to controls. CD103 was expressed at a high level on the surfaces of tumor-infiltrating lymphocytes in patients with breast cancer. Its expression in peripheral blood was not correlated with clinical TNM stage. To determine the localisation of CD103+ cells in breast tissue, tissue sections of breast tumors were stained for CD103. In tissue sections of breast tumors stained for CD103, its expression in T lymphocytes was higher compared to normal breast tissue. In addition, CD103+ cells expressed higher levels of receptors for inflammatory chemokines, compared to CD103- cells. CD103+ cells in peripheral blood and tumor tissue might be an important source of tumor-infiltrating lymphocyte trafficking, homing, and retention in cancer patients.

T Cell Microvilli: Finger-Shaped External Structures Linked to the Fate of T Cells

  • Hye-Ran Kim;Jeong-Su Park;Won-Chang Soh;Na-Young Kim;Hyun-Yoong Moon;Ji-Su Lee;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.3.1-3.14
    • /
    • 2023
  • Microvilli are outer membrane organelles that contain cross-linked filamentous actin. Unlike well-characterized epithelial microvilli, T-cell microvilli are dynamic similar to those of filopodia, which grow and shrink intermittently via the alternate actin-assembly and -disassembly. T-cell microvilli are specialized for sensing Ags on the surface of Ag-presenting cells (APCs). Thus, these finger-shaped microprotrusions contain many signaling-related proteins and can serve as a signaling platforms that induce intracellular signals. However, they are not limited to sensing external information but can provide sites for parts of the cell-body to tear away from the cell. Cells are known to produce many types of extracellular vesicles (EVs), such as exosomes, microvesicles, and membrane particles. T cells also produce EVs, but little is known about under what conditions T cells generate EVs and which types of EVs are released. We discovered that T cells produce few exosomes but release large amounsts of microvilli-derived particles during physical interaction with APCs. Although much is unanswered as to why T cells use the same organelles to sense Ags or to produce EVs, these events can significantly affect T cell fate, including clonal expansion and death. Since TCRs are localized at microvilli tips, this membrane event also raises a new question regarding long-standing paradigm in T cell biology; i.e., surface TCR downmodulation following T cell activation. Since T-cell microvilli particles carry T-cell message to their cognate partner, these particles are termed T-cell immunological synaptosomes (TISs). We discuss the potential physiological role of TISs and their application to immunotherapies.