• Title/Summary/Keyword: ill-posed inverse problem

Search Result 36, Processing Time 0.019 seconds

A Study on the Ill-posed Inverse Problem of Two-dimensional Waves due to Pressure Distribution Using Regularization Method (2차원 자유표면파의 부정치 역문제에 대한 정규화기법의 적용)

  • Taek-S. Jang;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.48-55
    • /
    • 1999
  • In this paper, the ill-posed inverse problem of surface waves caused by a two-dimensional pulsating pressure distribution on the free surface is studied using the regularization method. In order to exemplify the method, a cosine pressure distribution on a limited range of the undisturbed free surface is considered. By taking the resulting horizontal velocity as input data, the corresponding pressure is determined numerically by three different regularization schemes. It is found that the iterated Tikhonov method provides with the most accurate result, while solutions obtained from the Landweber-Friedman regularization are most stable.

  • PDF

A MTF Compensation for Satellite Image Using L-curve-based Modified Wiener Filter (L-곡선 기반의 Modified Wiener Filter(MWF)를 이용한 위성 영상의 MTF 보상)

  • Jeon, Byung-Il;Kim, Hongrae;Chang, Young Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.561-571
    • /
    • 2012
  • The MTF(Modulation Transfer Function) is one of quality assesment factors to evaluate the performance of satellite images. Image restoration is needed for MTF compensation, but it is an ill-posed problem and doesn't have a certain solution. Lots of filters were suggested to solve this problem, such as Inverse Filter(IF), Pseudo Inverse Filter(PIF) and Wiener Filter(WF). The most commonly used filter is a WF, but it has a limitation on distinguishing signal and noise. The L-curve-based Modified Wiener Filter(MWF) is a solution technique using a Tikhonov regularization method. The L-curve is used for estimating an optimal regularization parameter. The image restoration was performed with Dubaisat-1 images for PIF, WF, and MWF. It is found that the image restored with MWF results in more improved MTF by 20.93% and 10.85% than PIF and WF, respectively.

Delayed Hopfield-like Neural Network for Solving Inverse Radiation Transport Problem

  • Lee, Sang-Hoon;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.21-26
    • /
    • 1996
  • The identification of radioactive source in a medium with a limited number of external detectors is introduced as an inverse radiation transport problem. This kind of inverse problem is usually ill-posed and severely under-determined, however, its applications are very useful in manu fields including medical diagnosis and nondestructive assay of nuclear materials. Therefore, it is desired to develop efficient and robust solution algorithms. As an approach to solving inverse problems, an artificial neural network is proposed. We develop a modified version of the conventional Hopfield neural network and demonstrate its efficiency and robustness.

  • PDF

Image Reconstruction using Simulated Annealing Algorithm in EIT

  • Kim Ho-Chan;Boo Chang-Jin;Lee Yoon-Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.211-216
    • /
    • 2005
  • In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically, the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simulated annealing technique as a statistical reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm at the expense of increased computational burden.

EIT Image Reconstruction by Simultaneous Perturbation Method

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.159-164
    • /
    • 2004
  • In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simultaneous perturbation method as an image reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with the 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm at the expense of increased computational burden.

  • PDF

A Image Reconstruction Uing Simulated Annealing in Electrical Impedance Tomograghy (시뮬레이티드 어닐링을 이용한 전기임픽던스단층촬영법의 영상복원)

  • Kim Ho-Chan;Boo Chang-Jin;Lee Yoon-Joon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.120-127
    • /
    • 2003
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simulated annealing technique as a statistical reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with the 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm or genetic algorithm at the expense of increased computational burden.

Finite Step Method for the Constrained Optimization Problem in Phase Contrast Microscopic Image Restoration

  • Adiya, Enkhbolor;Yadam, Bazarsad;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • The aim of microscopic image restoration is to recover the image by applying the inverse process of degradation, and the results facilitate automated and improved analysis of the image. In this work, we consider the problem of image restoration as a minimization problem of convex cost function, which consists of a least-squares fitting term and regularization terms with non-negative constraints. The finite step method is proposed to solve this constrained convex optimization problem. We demonstrate the convergence of this method. Efficiency and restoration capability of the proposed method were tested and illustrated through numerical experiments.

  • PDF

Image Reconstruction with Prior Information in Electrical Resistance Tomography

  • Kim, Bong Seok;Kim, Sin;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.8-18
    • /
    • 2014
  • Electrical resistance tomography (ERT) has high temporal resolution characteristics therefore it is used as an alternative technique to visualize two-phase flows. The image reconstruction in ERT is highly non-linear and ill-posed hence it suffers from poor spatial resolution. In this paper, the inverse problem is solved with homogeneous data used as a prior information to reduce the condition number of the inverse algorithm and improve the spatial resolution. Numerical experiments have been carried out to illustrate the performance of the proposed method.

Study on Efficient Image Restoration using Reference Image (기준 영상을 활용한 효율적 영상 복원에 관한 연구)

  • Kim, Intaek;Awan, Tayyab Wahab
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.645-650
    • /
    • 2015
  • Image restoration is required when the image is blurred due to out of focus or motion during the image acquisition. This type of image restoration is known as ill-posed inverse problem because the estimate of an original image should be derived from only one blurred image. This paper introduces a reference image to facilitate the restoration process. The experimental result shows that computation time is significantly reduced, compared with other methods. The proposed method obtains the estimate of the kernel used in blurring processing. New cost function is defined to update both the image and the kernel alternately. In the last stage, Wiener filter produces the estimate of an original image using the kernel and the reference image.

Intelligent Optimization Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography (지능 최적 알고리즘을 이용한 전기임피던스 단층촬영법의 영상복원)

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.513-516
    • /
    • 2002
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents two intelligent optimization algorithm techniques such as genetic algorithm and simulated annealing for the solution of the static EIT inverse problem. We summarize the simulation results for the three algorithm forms: modified Newton-Raphson, genetic algorithm, and simulated annealing.

  • PDF