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Abstract

Electrical resistance tomography (ERT) has high temporal resolution characteristics therefore it is used as an

alternative technique to visualize two-phase flows. The image reconstruction in ERT is highly non-linear and

ill-posed hence it suffers from poor spatial resolution. In this paper, the inverse problem is solved with

homogeneous data used as a prior information to reduce the condition number of the inverse algorithm and

improve the spatial resolution. Numerical experiments have been carried out to illustrate the performance of the

proposed method.
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I. Introduction

Two-phase flows are of great interest in many

engineering applications. For example, liquid-gas or

liquid-vapor mixtures are encountered in condensers,

evaporators, gas-liquid reactors and combustion

systems[1]. The flow configuration of the two-phase

mixture is important in the design and safe

operation of such systems. For the visualization of

two-phase flows, various tomographic techniques

with noninvasive modalities have been developed,

for example, gamma densitometry, ultrasonic

imaging and nuclear magnetic resonance imaging.

Electrical resistance tomography (ERT) has been

employed as an alternative technique to visualize

two-phase flows[2], because it offers a high

temporal resolution to monitor fast transient

processes. While ERT has a strong potential for

visualizing of two-phase fields, it still remains a

challenging problem to improve the spatial resolution

due to its non-linearity and ill-posedness.

In order to overcome a poor spatial resolution,

Kim et al.[3] proposed a novel adaptive mesh

grouping scheme with predefined thresholds to

enhance the spatial resolution of the Gauss-Newton

(GN) method. In this approach, best homogeneous

resistivity value [4] was employed to determine the

classification criterion from the resistivity profile

estimated after several iterations. Kim et al.[5]

proposed a novel image reconstruction technique to

improve the spatial resolution by employing an

adaptive threshold method to the iterative

Gauss-Newton method. In their approach, an optimal

threshold is automatically selected by Otsu‘s

method[6] and then the adaptive threshold value is

employed to separate the background from the

target regions based on the resistivity profile

estimated on every iteration.

Introducing prior information into ERT inverse
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solver can diminish the ill-posedness and thus can

have improved reconstruction images[7]. In this

perspective, few researchers have assumed

conductivities of anamolies is constant and isotropic

in two-phase flow aiming in locating the boundary

of anamolies[8-10]. In the work of Kim et al.[11], as

a prior information fixed structures inside the

process vessel are considered as electrodes and

resistivity values are assumed to be known for

two-phase flow monitoring. Heikkinen et al.[12]

estimated the volume fraction distribution with bulk

volume fraction as prior information. Ill-posedness

can also be reduced by regularization. Different

regularization schemes are adopted with the ERT

image reconstruction to mitigate the ill-posedness

[4,13-14].

In this paper, prior information is homogeneous

data inside a given domain. Implementing this prior

information into the image reconstruction, more

improved results could be made with the aid of

ERT. As an inverse solver the iterative

Gauss-Newton method incorporating prior

information is employed to improve the spatial

resolution. The main feature of the proposed method

is to reduce the condition number of the inverse

algorithm and diminish the ill-posedness in the

inverse problem, and therefore enhance the spatial

resolution. Numerical experiments have been carried

out to illustrate the reconstruction performance of

the proposed method.

II. Forward Problem

In ERT, currents are injected through the

electrodes placed on the surface of a domain and

the resulting voltages are measured across these

electrodes. The forward problem is to compute the

boundary voltages given the internal conductivity

distribution and the applied currents.

When current  is injected through the electrode

on the surface  and the conductivity distribution

 is known, the electric potential  in the domain

∈ℝ can be solved from the partial differential

equation with the boundary conditions for the

complete electrode model[15]

∇⋅∇  in  (1)




 on     … (2)







  on     … (3)




  off  (4)

where  denotes the effective contact impedance

between the electrode and the surface,  is the

boundary voltage measured through the electrode ,

 is the outward unit normal and  is the number

of electrodes.

There are various data collection methods by

which the currents are injected and the resulting

voltages are measured[16]. Several ways of them

are commonly used in two-dimensional imaging, for

example adjacent method, opposite method and

trigonometric method. In this paper, the adjacent

method is employed, which has good sensitivity at

the periphery but not good at the center because of

the lower current density.

The finite element (FE) method is used to obtain

the numerical solution of the governing equation.

The domain is divided into a finite number of small

triangular elements and it is assumed that the

conductivity is constant within each element. The

forward problem can be formulated as a system of

linear equations,   where

∈ℝ  ×   denotes the system matrix,

∈ℝ  × is the forward solution,

∈ℝ  × is the data vector that is a function

of the injected currents and  is the number of

nodes. Details for the forward problem are given in

the reference[7].

III. Inverse Problem

3.1 Conventional iterative Gauss-Newton

method

In order to solve the non-linear ERT inverse

problem, usually the GN method is employed to

determine the resistivity distribution inside the

domain. To overcome the ill-posedness of the ERT

inverse problem, the following objective function

with the regularization is formulated to minimize the

error in the least-square sense
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. True and reconstructed images: (a) 2D plot for the true resistivity distribution, (b) the corresponding 3D

representation, (c) 2D plot for the reconstructed static image using one-step GN method, (d) the corresponding

3D representation, (e) 2D plot for the reconstructed difference image between inhomogeneous and prior

homogeneous data using one-step GN method, (f) the corresponding 3D representation, (g) 2D plot after image

segmentation and (h) the corresponding 3D representation.

그림 1. 원래 영상과 복원 영상: (a) 원래 저항률 분포에 대한 2D 영상, (b) 이에 상응하는 3D 영상, (c) one-step GN 방법을

사용해 복원된 2D 정적 영상, (d) 이에 상응하는 3D 영상, (e) 균질 데이터와 비균질 데이터를 사용해 복원된 2D 차

이 영상, (f) 이에 상응하는 3D 영상, (g) 영상 분할 후의 2D 영상, (h) 이에 상응하는 3D 영상

  

 ∥∥∥∥ (5)

where  denotes the voltages calculated through

the FE formulation,  is the actual voltages

measured across the electrodes,  and  are the

regularization parameter and matrix, respectively.

Taking the derivative and linearizing about a

resistivity vector    at th iteration, the GN

method can be obtained as

   
 

 


×   
  

(6)

where   ≡   ∈ℝ× is the Jacobian

matrix,   ≡   ∈ℝ× ,  is the number of

measured patterns,  is the number of elements

and the regularization matrix ∈ℝ× is used

with a first-order discrete Gaussian smoothing

operator. Here, when  , it is called one-step GN

method.

The GN method is used as a standard inverse

algorithm for static scenarios of the ERT inverse

problem. However, it sometimes meets the

ill-posedness problem and fails to get the good

spatial resolution in the presence of noise. In this

paper, to mitigate the ill-posedness and improve the

spatial resolution, the homogeneous data as a prior

information is employed in the inverse solver, which

is available to get in advance in the two-phase flow

fields.

3.2 Iterative Gauss-Newton method with prior

information

For the ERT reconstruction problem the following

objective function with prior information can be

formulated to minimize the error

  

 ∥∥∥∥ (7)

where  is prior information.

Taking the derivative and linearizing about a

resistivity vector    at th iteration, the GN

method with prior information can be obtained
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    
 



×   
   

(8)

Here, the term     can be enforced to

be a zero vector by choosing     as prior

information, then we have the simplified GN method

for updating the resistivity vector as follows

 
   

  
 


 
 

(9)

To verify the effect of prior information of

homogeneous background in a circular domain, the

one-step GN method is employed to reconstruct the

simulated scenario in the presence of noise, as an

example of visualization of two-phase flows. True

distribution of internal resistivity can be viewed in

2D and 3D representation as shown in figures 1(a)

and 1(b), respectively. The anomaly with circular

shape is assumed to be static during the time to

collect a full set of independent measurement data.

The reconstructed image of internal resistivity

distribution using one-step GN method is shown in

figure 1(c) as 2D representation and figure 1(d)

shows its 3D representation. From figures 1(c) and

1(d), it can be noticed that the target is

distinguished from the background. However, the

image is blurred, especially the background

distribution is not uniform because of noise as

shown in figure 1(d). The spatial resolution is poor

while using conventional GN method as inverse

solver.

Use of prior homogeneous resistivity distribution

can improve the spatial resolution of the

reconstructed image. Moreover, it reduces the

condition number and ill-posedness of the inverse

solver. Figure 1(e) shows the difference image

between reconstructed inhomogenous and

homogenous resistivity distributions. It can be

noticed that the target region is more apparent

compared to figure 1(c) and the background region

in figure 1(f) is even. The reconstructed resistivity

distribution using the prior homogenous data still

contains blurred regions and due to regularization

used in inverse problem the element resistivity

values are smoothened out.

Image segmentation is done to improve the spatial

resolution of the reconstructed results with prior

information. Region enclosed by the maximum and

background resistivities are determined from the

resistivity distribution plot. The region is divided

into three equal segments with two threshold levels.

The maximum resistivity value corresponds to the

target resistivity value and the three regions

correspond to the pixels near to the target and

background. The pixels that have value less than

the lower threshold level are assigned as

background elements and the pixels that have value

more than the lower threshold value are assigned as

target elements. Therefore after image segmentation

as seen from figures 1(g) and 1(h) more uniform

distribution is observed in background and target

regions thus improving spatial resolution.

The proposed iterative GN method with prior

information (GNPI) is described in detail in the

following steps.

(i) Find an initial guess  that is the best

homogeneous resistivity approximation in the

least-square sense[4].

(ii) Compute the boundary voltage   and the

Jacobian matrix   with the initial resistivity  .

(iii) Estimate and save the resistivity vector (homo)
for the homogeneous data using the one-step GN

method in eq. (9).

(iv) Set  .

(v) Update the resistivity vector using the GN

method in eq. (9).

(vi) Compute the resistivity difference between

inhomogeneous and homogeneous data.

homo (10)

where  and homo are inhomogeneous and

homogeneous estimated resistivity vectors,

respectively.

(vii) Find an index vector ∈ℝ× for the

background elements.

 find

i ndex≤max i fbactar (11)

where  is the number of background indices, bac
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(a)

(b)

Fig. 2. The FE meshes: (a) forward fine mesh and (b)

inverse coarse mesh. The colored regions in the

boundary represent 32 electrodes.

그림 2. 유한요소 메쉬: (a) 정문제를 위한 조밀한 메쉬, (b)

역문제를 위한 성긴 메쉬. 경계면의 색 영역들은

32개의 전극들을 의미한다.

and tar denote background and target resistivity
values, respectively, which could be approximately

known from prior information in a given domain.

(viii) Modify the updated resistivity vector  with

the background index as follows:

  
homo (12)

where
homo represents the mean value of homo .

(ix) Modify the regularization matrix in eq. (9)

based on the background index, that is, the

standard Tikhonov regularization is employed only

for the background elements as follows[5]:


  for     
  end

(13)

where  denotes the modified regularization matrix.

(x) Compute the boundary voltage   and the

Jacobian matrix   with the modified resistivity

vector  .

(xi) Set   and replace  with  in eq. (9)

and go to step (v).

IV. Results

The performance of the proposed method was

evaluated using numerical data, and the results were

compared with the conventional GN method.

A circular domain was used in this study, which

could be considered as a model for the

cross-section of an industrial process pipe. In order

to describe the resistivity distribution inside the

domain, two different FE meshes were employed in

the forward and inverse problems so that the

inverse crime[17] was avoided. For the numerical

data we computed boundary voltages with the FE

fine mesh shown in figure 2(a).

For the forward computations a fine mesh was

generated with 3104 elements and 1681 nodes as

shown in figure 2(a). In the inverse computations

the coarse mesh with 776 elements and 453 nodes

as shown in figure 2(b) was used to estimate the

resistivity distribution. Adjacent current patterns

were injected into the domain of 4 cm in radius

through 32 electrodes in both numerical and

experimental studies.

In order to generate the simulated noisy data, we

computed the forward solver and a zero-mean

Gaussian-distributed random noise with 1%

standard deviation was added to the calculated

voltages.

The geometry of the numerical phantom assumed

was as follows: radius 4 cm, width of the electrode

0.6 cm and the amplitude of the currents was 10

mA. The resistivity value of the background was

300 Ωcm and the target resistivity value was set to

900 Ωcm.

Three different scenarios were considered to test

the reconstruction performance of the proposed

algorithm according to the different regularization

parameters. Numerical simulations were performed
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Reconstructed images for case 2: (a) image by GN ( × ), (b) image by GN ( × ), (c) image

by GN ( × ), (d) image by GNPI ( ×  ), (e) image by GNPI ( ×  ) and (f) image by

GNPI ( × ). The black circles in the images represent the true positions of five targets.

그림 4. 경우 2에 대한 복원 영상: (a) GN 방법에 의한 영상 ( × ), (b) GN 방법에 의한 영상 ( ×  ), (c)

GN 방법에 의한 영상 ( ×  ), (d) GNPI 방법에 의한 영상 ( × ), (e) GNPI 방법에 의한 영상

( × ), (f) GNPI 방법에 의한 영상 ( × ). 영상 내의 검은 색 원들은 5개 표적들의 원래 위치를

나타낸다.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Reconstructed images for case 1: (a) image by GN ( × ), (b) image by GN ( × ), (c) image

by GN ( × ), (d) image by GNPI ( ×  ), (e) image by GNPI ( ×  ) and (f) image by

GNPI ( × ). The black circles in the images represent the true position of one centered target.

그림 3. 경우 1에 대한 복원 영상: (a) GN 방법에 의한 영상 ( × ), (b) GN 방법에 의한 영상 ( ×  ), (c)

GN 방법에 의한 영상 ( ×  ), (d) GNPI 방법에 의한 영상 ( × ), (e) GNPI 방법에 의한 영상

( × ), (f) GNPI 방법에 의한 영상 ( ×  ). 영상 내의 검은 색 원들은 1개 표적의 원래 위치를 나

타낸다.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Reconstructed images for case 3: (a) image by GN ( ×  ), (b) image by GN ( × ), (c) image

by GN ( × ), (d) image by GNPI ( ×  ), (e) image by GNPI ( ×  ) and (f) image by

GNPI ( × ). The black circles in the images represent the true positions of seven targets.

그림 5. 경우 3에 대한 복원 영상: (a) GN 방법에 의한 영상 ( ×  ), (b) GN 방법에 의한 영상 ( ×  ), (c)

GN 방법에 의한 영상 ( × ), (d) GNPI 방법에 의한 영상 ( ×  ), (e) GNPI 방법에 의한 영상

( × ), (f) GNPI 방법에 의한 영상 ( × ). 영상 내의 검은 색 원들은 7개 표적들의 원래 위치를 나

타낸다.

(a) (b) (c)

Fig. 6. Condition numbers in two inverse algorithms used for (a) case 1, (b) case 2 and (c) case 3. GN ( ) and GNPI

( ). The regularization parameter,  ×  (solid line) and  ×  (dashed line).

그림 6. 두 역문제 알고리즘들의 상태수 (a) 경우 1, (b) 경우 2, (c) 경우 3. GN ( )과 GNPI ( ). 조정 인자,  × 

(굵은 선)과  ×  (점선).

with several targets having a circular shape of

radius 0.6 cm. Case 1 is for single circular target

placed at the center of the domain. Multiple targets

located inside the domain are considered in case 2

(five targets) and case 3 (seven targets).

Figure 3 shows the reconstructed images for case

1. The first and second rows in figure 3 show the

reconstructed images after 10 iterations using the

conventional GN method and the GNPI method,

respectively, according to the different regularization

parameters, i.e.,  ×  (first column),

 ×  (second column) and  ×  (third

column). In the first row, according to decreasing

the regularization parameter, the reconstructed
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Relative image errors (IE) and correlation coefficients (CC) for cases 1 to 3: (a) IE for case 1, (b) CC for case

1, (c) IE for case 2, (d) CC for case 2, (e) IE for case 3 and (f) CC for case 3. GN ( ) and GNPI ( ).

The regularization parameter,  ×  (solid line) and  ×  (dashed line).

그림 7. 경우 1에서 경우 3까지의 상대적 영상 오차(IE)와 상관계수(CC): (a) 경우 1에 대한 IE, (b) 경우 1에 대한 CC, (c) 경

우 2에 대한 IE, (d) 경우 2에 대한 CC, (e) 경우 3에 대한 IE, (f) 경우 3에 대한 CC. GN ( )과 GNPI ( ). 조

정인자,  ×  (굵은 선)과  ×  (점선).

images by the GN method have poor resolution

because of noise effect. However, in the second

row, the target is reconstructed with good accuracy

by the proposed method. Moreover, the GNPI

images have even background resistivity distribution

whose value is close to the true one. It is noted

that the reconstructed image by the GNPI method

has better spatial resolution compared to the GN
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method.

The reconstructed images with multi targets for

case 2 are shown in figure 4. The first and second

rows in figure 4 show the reconstructed images

after 10 iterations using the GN and GNPI methods,

respectively, with different regularization parameters.

In the first and second columns of the reconstructed

images by both methods, all of the five targets

could not be distinguished with the higher

regularization parameter. However, when the

regularization parameter decreases, the five targets

are visible but the background neighbor pixels of

target have irregular resistivity values in the GN

image of figure 4(d). On the other hand with the

GNPI method in figure 4(e), the target locations are

estimated with good accuracy.

The reconstructed images for case 3 are shown in

figure 5. The reconstructed images are shown in

the first and second rows after 10 iterations using

the GN and GNPI methods, respectively, with

different regularization parameters. With the higher

regularization parameter, two targets near the center

of the domain are missing in figures 5(b) and 5(e).

However, with the lower regularization parameter in

the third column, the seven targets are

reconstructed by the GN and GNPI methods. Figure

5(d) shows the locations of the seven targets but

the estimated values of the background resistivity

distribution are lower compared to the true ones of

that. However, in the GNPI image of figure 5(g),

seven targets are distinguishable clearly with flat

background resistivity distribution. Furthermore, the

target and background resistivity distributions

estimated by the proposed method are close to the

true ones compared to the GN method. Similar to

the results of cases 1 and 2, the proposed method

estimates the positions of the multi targets with

good accuracy and has good resolution.

In figure 6, the condition numbers in two inverse

algorithms are shown according to the iteration

number for cases 1 to 3. The lines and

correspond to the condition numbers in the GN and

GNPI methods, respectively. The solid and dashed

lines correspond to the regularization parameters,

 ×  and  ×  , respectively. From

figure 6, it can be noticed that the condition number

of the GNPI method is smaller than that of the GN

method for all cases. This means the proposed

scheme has contributed to diminishing the

ill-posedness in the ERT inverse problem.

In order to evaluate the reconstruction

performance of the inverse algorithms, the relative

image error (IE) and the correlation coefficient (CC)

between true and estimated resistivity vectors are

used[18]

IE


(14)

CC




 



 

 







 



  
(15)

where  and  are the true and estimated

resistivity vectors, respectively, and  and
 are

the mean values of  and  , respectively. It should

be noticed that smaller IE and bigger CC values

correspond to better reconstruction performance.

Figure 7 shows the IE and CC plots according to

the iteration number for cases 1 to 3. The lines

and correspond to the GN and GNPI methods,

respectively. As expected from the reconstructed

images in figure 2 to figure 4, the GNPI method

has smaller and bigger values for the given

regularization parameter in the IE and CC plots,

respectively, which means the proposed method

gives better reconstruction performance compared to

the GN method.

V. Conclusions

This paper is concerned with reducing the condition

number and diminishing the ill-posedness, and

therefore enhancing the spatial resolution in the

ERT inverse problem. In this paper, prior knowledge

of the homogeneous data is employed to improve

the spatial resolution of the conventional

Gauss-Newton method in two-phase flow fields.

Moreover, image segmentation is used to extract the

background elements from the target elements and

to make more uniform distribution in the

background regions. Numerical experiments were

carried out to evaluate the reconstruction

performance of the proposed method. After prior
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information and image segmentation are

implemented into the image reconstruction, improved

results are obtained with the aid of the proposed

scheme compared to the conventional Gauss-Newton

method.
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