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Image Reconstruction with Prior Information in
Electrical Resistance Tomography
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Abstract
Electrical resistance tomography (ERT) has high temporal resolution characteristics therefore it is used as an
alternative technique to visualize two-phase flows. The image reconstruction in ERT is highly non-linear and
ill-posed hence it suffers from poor spatial resolution. In this paper, the inverse problem is solved with
homogeneous data used as a prior information to reduce the condition number of the inverse algorithm and
improve the spatial resolution. Numerical experiments have been carried out to illustrate the performance of the

proposed method.
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I. Introduction

Two-phase flows are of great interest in many
engineering applications. For example, liquid-gas or
liquid—-vapor mixtures are encountered in condensers,

evaporators, gas-liquid reactors and combustion

systems[1]. The flow configuration of the two-phase

mixture is important in the design and safe

operation of such systems. For the visualization of
two-phase flows, various tomographic techniques
with noninvasive modalities have been developed,
for example, ultrasonic

gamma  densitometry,

imaging and nuclear magnetic resonance imaging.
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Electrical resistance tomography (ERT) has been
employed as an alternative technique to visualize
flows[2], high
resolution  to transient

offers a
fast
processes. While ERT has a strong potential for

two-phase because it

temporal monitor
visualizing of two-phase fields, it still remains a
challenging problem to improve the spatial resolution
due to its non-linearity and ill-posedness.

In order to overcome a poor spatial resolution,
Kim et all3] proposed a novel adaptive mesh
thresholds to

enhance the spatial resolution of the Gauss-Newton

grouping scheme with predefined
(GN) method. In this approach, best homogeneous
resistivity value [4] was employed to determine the
classification criterion from the resistivity profile
Kim et al[5]

proposed a novel image reconstruction technique to

estimated after several iterations.

improve the spatial resolution by employing an
threshold method to the
Gauss—Newton method. In their approach, an optimal
threshold is automatically selected by Otsu's
method[6] and then the adaptive threshold value is
employed to separate the

adaptive iterative

background from the

target regions based on the resistivity profile

estimated on every iteration.
Introducing prior information into ERT inverse
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solver can diminish the ill-posedness and thus can
In this
assumed

have improved reconstruction images[7].

perspective, few  researchers  have
conductivities of anamolies is constant and isotropic
in two-phase flow aiming in locating the boundary
of anamolies[8-10]. In the work of Kim et al.[11], as
inside the

a vprior information fixed structures

process vessel are considered as electrodes and
resistivity values are assumed to be known for
two-phase flow monitoring. Heikkinen et al.[12]
estimated the volume fraction distribution with bulk
volume fraction as prior information. Ill-posedness
can also be reduced by regularization. Different
regularization schemes are adopted with the ERT
image reconstruction to mitigate the ill-posedness
[4,13-14].

In this paper, prior information is homogeneous
data inside a given domain. Implementing this prior
into the
improved results could be made with the aid of
ERT. As the

Gauss—Newton incorporating

information image reconstruction, more

inverse  solver iterative
method

is employed to

an
prior
information improve the spatial
resolution. The main feature of the proposed method
is to reduce the condition number of the inverse
algorithm and diminish the ill-posedness in the
inverse problem, and therefore enhance the spatial
resolution. Numerical experiments have been carried
out to illustrate the reconstruction performance of

the proposed method.

[l. Forward Problem

In ERT, the
electrodes placed on the surface of a domain and

currents are injected through
the resulting voltages are measured across these
electrodes. The forward problem is to compute the
boundary voltages given the internal conductivity
distribution and the applied currents.

When current 7, is injected through the electrode

on the surface 82 and the conductivity distribution
o is known, the electric potential u in the domain

N€R? can be solved from the partial differential

equation with the boundary conditions for the

complete electrode model[15]

VvV -oVu=0 in {2 (1

0
u—O—zl(r—u: Uy one, 1=12,..,L 2
ov

/ o ds=] one, 1=12,..L 3)
ov

€

ou

O'EZO off g )

where 2, denotes the effective contact impedance
U, is the

boundary voltage measured through the electrode e,

between the electrode and the surface,

v is the outward unit normal and L is the number
of electrodes.

There are various data collection methods by
which the currents are injected and the resulting
voltages are measured[16]. Several ways of them
are commonly used in two-dimensional imaging, for
opposite method and

example adjacent method,

trigonometric method. In this paper, the adjacent
method is employed, which has good sensitivity at
the periphery but not good at the center because of
the lower current density.

The finite element (FE) method is used to obtain
the numerical solution of the governing equation.
The domain is divided into a finite number of small
triangular elements and it is assumed that the
conductivity is constant within each element. The
forward problem can be formulated as a system of
Ab=f

linear equations, where

AeRWHETIXWNHLED o otes the system matrix,

N,+L—1)x1 the

beR' is forward solution,

fE]R(N”+L71)X1 is the data vector that is a function

of the injected currents and N,

. is the number of
nodes. Details for the forward problem are given in

the reference[7].

Ill. Inverse Problem

3.1 Conventional iterative Gauss-Newton
method

In order to solve the non-linear ERT inverse
problem, usually the GN method is employed to
determine the resistivity distribution inside the
domain. To overcome the ill-posedness of the ERT
inverse problem, the following objective function
with the regularization is formulated to minimize the

error in the least-square sense
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@(p):%{ | Up) = VI24+al Rpll2} 5)

where Ulp) denotes the voltages calculated through
the FE formulation, V is the actual voltages
measured across the electrodes, a« and R are the
regularization parameter and matrix, respectively.

Taking the derivative and linearizing about a
resistivity vector ﬁl,l at (i—1)th iteration, the GN
method can be obtained as
pi=pigt [JzzlJiﬂ"'o‘RTR]il

X [‘]1111 ( V= Ui—l)_aRTR:;i—l

where J_, =J(p,_,)ER™Y is the Jacobian

(6)

matrix, U,_, = Ulp,_,)ER**' K is the number of
measured patterns, N is the number of elements

and the regularization matrix RERYY is used

algorithm for static scenarios of the ERT inverse

problem. However, it sometimes meets the
ill-posedness problem and fails to get the good
spatial resolution in the presence of noise. In this
paper, to mitigate the ill-posedness and improve the
spatial resolution, the homogeneous data as a prior
information is employed in the inverse solver, which
is available to get in advance in the two-phase flow

fields.

3.2 Iterative Gauss—-Newton method with prior
information

For the ERT reconstruction problem the following
objective function with prior information can be
formulated to minimize the error

d(p) = %{ I Ulp)— VI Zral R(p—p*) I 2} (7)

with a first-order discrete Gaussian smoothing oL .. .
) o where p is prior information.
operator. Here, when i=1, it is called one-step GN
method.

The GN method is used as a standard inverse

Taking the derivative and linearizing about a

resistivity vector p,_, at (i—1)th iteration, the GN

method with prior information can be obtained

(

b) (c)
f) (@

(e) ( (h)

Fig. 1. True and reconstructed images: (a) 2D plot for the true resistivity distribution, (b) the corresponding 3D
representation, (c) 2D plot for the reconstructed static image using one-step GN method, (d) the corresponding
3D representation, (e) 2D plot for the reconstructed difference image between inhomogeneous and prior
homogeneous data using one-step GN method, (f) the corresponding 3D representation, (g) 2D plot after image
segmentation and (h) the corresponding 3D representation.

a9 1 de 98 59 4k (@) 98 AZE Bx dis 2D 97, (b) ool 3835 3D B4, (¢) one-step GN HH&
AHES] 59E 2D BA 4, (D) elol 83she 3D 94, (o) A HlolE et v A dHo|HE AHgs] HUH 2D A
o] 44, (f) ololl A-53H= 3D 94, (g) G &3 39 2D 44, (h) o]ol 53k 3D 9%

(10)
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Pz':ﬁi—f" [Ji{lji—l"'aRTR]_l
x [Ji]:l(Vi Ui—1)*0‘RTR(fA’i—1*P*)]
(8
Here, the term aRTR([)i,l—p*) can be enforced to
be a zero vector by choosing p* :f)i,l as prior

information, then we have the simplified GN method
for updating the resistivity vector as follows

/37' :lA’i—l"' Jizljf—l"'aRTerJia(V_ Uz:ﬂ)
9)
To verify the effect of prior information of
homogeneous background in a circular domain, the
one-step GN method is employed to reconstruct the
simulated scenario in the presence of noise, as an
example of visualization of two-phase flows. True
distribution of internal resistivity can be viewed in
2D and 3D representation as shown in figures 1(a)
and 1(b), respectively. The anomaly with circular
shape is assumed to be static during the time to
collect a full set of independent measurement data.
The

distribution using one-step GN method is shown in

reconstructed 1image of internal resistivity
figure 1(c) as 2D representation and figure 1(d)
shows its 3D representation. From figures 1(c) and
Ud), it be that the
distinguished from the background. However, the
blurred, the

is not uniform because of noise as

can noticed target is

image is especially background
distribution
shown in figure 1(d). The spatial resolution is poor
while using conventional GN method as inverse
solver.

Use of prior homogeneous resistivity distribution

the of  the
image. reduces the

condition number and ill-posedness of the inverse

can improve spatial  resolution

reconstructed Moreover, it

solver. Figure 1(e) shows the difference image
between reconstructed inhomogenous and
homogenous resistivity distributions. It can be

noticed that the target region is more apparent
compared to figure 1(c) and the background region
in figure 1(f) is even. The reconstructed resistivity
distribution using the prior homogenous data still
contains blurred regions and due to regularization
used in inverse problem the element resistivity
values are smoothened out.

Image segmentation is done to improve the spatial

(11)

11

resolution of the reconstructed results with prior
information. Region enclosed by the maximum and
background resistivities are determined from the
resistivity distribution plot. The region is divided
into three equal segments with two threshold levels.
The maximum resistivity value corresponds to the
target the
correspond to the pixels near to the target and

resistivity value and three regions

background. The pixels that have value less than
the threshold
background elements and the pixels that have value

lower level are assigned as
more than the lower threshold value are assigned as
target elements. Therefore after image segmentation
as seen from figures 1(g) and 1(h) more uniform
distribution is observed in background and target
regions thus improving spatial resolution.

The proposed iterative GN
information (GNPI)

following steps.

method with prior

is described in detail in the

() Find an initial guess p, that is the best

homogeneous  resistivity — approximation in the

least-square sensel4].
(i) Compute the boundary voltage U(p,) and the

Jacobian matrix J(p,) with the initial resistivity p,.

(iii) Estimate and save the resistivity vector (p,,.)
for the homogeneous data using the one-step GN
method in eq. (9).

(iv) Set i=1.

(v) Update the resistivity vector using the GN
method in eq. (9).
(vi)

inhomogeneous and homogeneous data.

Compute the resistivity difference between

OP= P; ~ Phomo (10)
where p, and p,,,, are inhomogeneous and
homogeneous estimated resistivity vectors,
respectively.

(vii) Find an index vector dER™ ' for the

background elements.
d= find_index(dp< max(dp)/3) ifpy. < pp (11

where NV, is the number of background indices, py,,
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and p,,, denote background and target resistivity

values, respectively, which could be approximately
known from prior information in a given domain.

(viii) Modify the updated resistivity vector }31- with
the background index as follows:

f;i (d) = /A)homo (12)

where p, ., represents the mean value of py ..

(ix) Modify the regularization matrix in eq. (9)
based that the
standard Tikhonov regularization is employed only

on the background index, is,

for the background elements as follows[5]:

- r

R(d,:) =0

forj=1: N,
R(d(j),d(j))

end

(13)

=1

Ll Jugua
0 2 4
(b)
Fig. 2. The FE meshes: (a) forward fine mesh and (b)
inverse coarse mesh. The colored regions in the
boundary represent 32 electrodes.

a9 2. frdes WA () ZEAE 98 =22 4, (b)
AEAE A% 430 . BAWe] A g9ES

e AFES

o] gk},

(12)
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where R denotes the modified regularization matrix.

(x) Compute the boundary voltage U(p,) and the
Jacobian matrix J([)i) with the modified resistivity

vector p;.

(xi) Set i=i+1 and replace B with R in eq. (9)
and go to step (v).

IV. Results

The performance of the proposed method was
evaluated using numerical data, and the results were
compared with the conventional GN method.

A circular domain was used in this study, which
the
cross—section of an industrial process pipe. In order

could be considered as a model for

to describe the resistivity distribution inside the
domain, two different FE meshes were employed in
so that the
inverse crime[17] was avoided. For the numerical

the forward and inverse problems
data we computed boundary voltages with the FE
fine mesh shown in figure 2(a).

For the forward computations a fine mesh was
generated with 3104 elements and 1681 nodes as
shown in figure 2(a). In the inverse computations
the coarse mesh with 776 elements and 453 nodes
as shown in figure 2(b) was used to estimate the
resistivity distribution. Adjacent current patterns
were injected into the domain of 4 cm in radius
through 32

experimental studies.

electrodes in both numerical and
In order to generate the simulated noisy data, we
computed the forward solver and a zero-mean
with 1%

standard deviation was added to the calculated

Gaussian-distributed  random  noise
voltages.

The geometry of the numerical phantom assumed
was as follows: radius 4 cm, width of the electrode
0.6 cm and the amplitude of the currents was 10
mA. The resistivity value of the background was
300 Qcm and the target resistivity value was set to
900 Qcm.

Three different scenarios were considered to test
the reconstruction performance of the proposed
algorithm according to the different regularization
parameters. Numerical simulations were performed
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(d)

Fig. 3. Reconstructed images for case 1: (a) image by GN (a=1x10"7), (b) image by GN (a=1x10"%), (c) image

a3

by GN (a=1x10""), (d) image by GNPI («=1x10"7), (e) image by GNPI («=1x10"%) and (f) image by
GNPI (a=1x10"?). The black circles in the images represent the true position of one centered target.

2% 19 o B4 94 (@) GN W 93 94 (a=1x1077), (h) GN el 93 G4 (a=1x10"%), (0)
GN ol 9 G4 (a=1x10""), (d) GNPI ol 93 94 (a=1x10"7), (&) GNPI FHol o3 4
(a=1x10"%), () GNPL ol o3 4 (a=1x10"7). 4 W] AL A 45& /) 549 9 JAE o}

ehdict.

Fig. 4. Reconstructed images for case 2 (a) image by GN (a=1x10"7), (b) image by GN (a=1x10"%), (c) image

a9 4.

by GN (a=1x10""), (d) image by GNPI (a=1x10"7), (e) image by GNPI (a=1x10"%) and (f) image by
GNPI (a=1x10""). The black circles in the images represent the true positions of five targets.

A% 20 W B 34 (@) GN el & 94 (a=1x10"7), (b) GN Bl o3& G4 (a=1x10"%), (©
GN o] 9 44 (a=1x10"°), (A GNPL ¥¥el o8 94 (a=1x10"7), (e) GNPI HHol 93 944
(a=1x10"%), (f) GNPI Wel] 23 G4 (a=1x10"7). J4 e He A A5 57 ¥4E59 4 JAS

b,

(13)
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with several targets having a circular shape of
radius 0.6 cm. Case 1 is for single circular target
placed at the center of the domain. Multiple targets
located inside the domain are considered in case 2
(five targets) and case 3 (seven targets).

Figure 3 shows the reconstructed images for case

Journal of IKEEE.Vol.18,No.1,008 ~018 March 2014

reconstructed images after 10 iterations using the
conventional GN method and the GNPI method,
respectively, according to the different regularization
parameters, a=1x10"7  (first
a=1x10"% (second column) and a=1x10""° (third

column). In the first row, according to decreasing

ie, column),

1. The first and second rows in figure 3 show the

the the reconstructed

regularization

parameter,

Fig. 5. Reconstructed images for case 3: (a) image by GN (a=1x10"7), (b) image by GN (a=1x10"%), (c) image
by GN (a=1x10""), (d) image by GNPI (a=1x10"7), (e) image by GNPI (a=1x10"%) and (f) image by
GNPI (a=1x10""). The black circles in the images represent the true positions of seven targets.

a9 5 A% 3o dE B9 gk (@) GN Wl 93 9A (a=1x10"7), (h) GN ol o3 g4 (a=1x10"%), (©

GN Hel g 44 (a=1x10"7), (d) GNPL #ddl 98 44 (a=1x10"7), (¢) GNPI #el g 4
(a=1x10"%), () GNPI HHel 23 G4 (a=1x10"7). 94 W] de A 52 77 #8459 49 AHE

Epiie,
¥ 10" Condition Number w10 Condition Number 210" Condition Mumber
i [
P B
.@-——-W""_n"r g ,a—-"ﬂ""a‘ PR S
5 " 5 P &r g
- Y | o
; -
/. 'f 5 /_ﬁ"
4" e 4y e
o -
L~ . 2
3F 3
3
oA g
2 gpemmOTE
2 oo -
-
¥ o T 2 e s o & s—a—:io!
= —- & & & & e e o o
et
] y S— L E— NI} L ] y S— L E— NI} T o A S S Y i S 1
1 4 5 Li] 7 ] 9 10 i 3 4 5 Li] 7 ] 9 101 2 3 4 5 B 7 8 g 10

Iterat-ion MNumber Iterat-ion MNumber I!eral;un Number
(a) (b) ()
Fig. 6. Condition numbers in two inverse algorithms used for (a) case 1, (b) case 2 and (c) case 3. GN (-5) and GNPI
(=o-). The regularization parameter, a=1x10"% (solid line) and a=1x10"" (dashed line).
a9 6 F GEA GuFEY AHE (@) 4% 1, () B$ 2, () 4F 3. GN (=) GNPI (-o-). 24 A, a=1x10"°
(#S AT a=1x10"7 ().

T =

(14)
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images by the GN method have poor resolution
because of noise effect. However, in the second
row, the target is reconstructed with good accuracy

by the proposed method. Moreover, the GNPI

Relative Image Errors (IE)

images have even background resistivity distribution
whose value is close to the true one. It is noted
that the reconstructed image by the GNPI method
has better spatial resolution compared to the GN

Correlation Coefficients (CC)

0.34
09
0.32
08 4
03
028
026
024
022 P o | o4 g ]
Rt -
S
02l 03 ‘E'_"‘ﬁ'----n—---.a.,,“_‘
018 el 2 0z
1 2 3 4 5 L] 7 8 9 10 1 2 3 4 5 3] 7 8 9 10
Iteration Number Iteration Number
(a) (b)
Relative Image Errors (IE) Correlation Coefficients (CC)
1
0g !
P T g ey
08 /,‘,---ﬂ"”"
07 4

D [N T - E—

18
l}‘1

04 4
03
0.2
2 3 4 5 L] 7 8 9 10 1 2 3 4 5 ] 7 8 9 10
Iteration Number Iteration Number
(e (d
Relative Image Errors (IE) Correlation Coefficients (CC)
1
02 PRI B A s ot
08 .
- e - e T
07
&
06
05 1
04 .
03
02
2 3 4 5 ] 7 8 9 10 1 2 3 4 & & 7 8 9 10

o 131
Iteration Number

(e

Iteration Number

()

Fig. 7. Relative image errors (IE) and correlation coefficients (CC) for cases 1 to 3: (a) IE for case 1, (b) CC for case
1, (¢) IE for case 2, (d) CC for case 2, (¢) IE for case 3 and (f) CC for case 3. GN (=) and GNPI (-&-).

The regularization parameter, a=1x10"% (solid line) and a=1x10"" (dashed line).

O 74 164 A 3R] AUl G LAIE)SE ABAG(CO): (@) AS- 19 didt IE, (b) 4% 1o gt CC, (o) 74
§- 20 Wigt IE, (d) A5 20 Wig CC, (e) 45 3ol Wit IE, (f) 49 34 gk CC. GN (-5-)# GNPI (-5-). =
AR}, a=1x10"% (F& )3} a=1x10"7 (FA).

(15)
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method.
The reconstructed images with multi targets for
case 2 are shown in figure 4. The first and second
rows in figure 4 show the reconstructed images
after 10 iterations using the GN and GNPI methods,
respectively, with different regularization parameters.
In the first and second columns of the reconstructed
images by both methods, all of the five targets
be the
when

higher
the
regularization parameter decreases, the five targets

could not distinguished  with

regularization  parameter. However,
are visible but the background neighbor pixels of
target have irregular resistivity values in the GN
image of figure 4(d). On the other hand with the
GNPI method in figure 4(e), the target locations are
estimated with good accuracy.

The reconstructed images for case 3 are shown in
figure 5. The reconstructed images are shown in
the first and second rows after 10 iterations using
the GN and GNPI methods, with

different regularization parameters. With the higher

respectively,

regularization parameter, two targets near the center
of the domain are missing in figures 5(b) and 5(e).
However, with the lower regularization parameter in
the  third column, the targets  are
reconstructed by the GN and GNPI methods. Figure
5(d) shows the locations of the seven targets but

seven

the estimated values of the background resistivity
distribution are lower compared to the true ones of
that. However, in the GNPI image of figure 5(g),
seven targets are distinguishable clearly with flat
background resistivity distribution. Furthermore, the
target and background resistivity distributions
estimated by the proposed method are close to the
true ones compared to the GN method. Similar to
the results of cases 1 and 2, the proposed method
estimates the positions of the multi targets with
good accuracy and has good resolution.

In figure 6, the condition numbers in two inverse
algorithms are shown according to the iteration
number for cases 1 to 3. The lines 5 and -&-
correspond to the condition numbers in the GN and
GNPI methods, respectively. The solid and dashed
lines correspond to the regularization parameters,
a=1x10"% and a=1x10""7,

figure 6, it can be noticed that the condition number

respectively. From

(16)
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of the GNPI method is smaller than that of the GN

method for all cases. This means the proposed

scheme has contributed to diminishing the
ill-posedness in the ERT inverse problem.
In order to evaluate the reconstruction

performance of the inverse algorithms, the relative
image error (IE) and the correlation coefficient (CC)
between true and estimated resistivity vectors are
used[18]

llol
N =
]_;{(m—p)(prpﬂ
CC= = ~ = (15)
S-Sl
=1 =
where p and p are the true and estimated

resistivity vectors, respectively, and p and ,:) are

the mean values of p and /3 respectively. It should
be noticed that smaller IE and bigger CC values
correspond to better reconstruction performance.
Figure 7 shows the IE and CC plots according to
the iteration number for cases 1 to 3. The lines 5-
and -©- correspond to the GN and GNPI methods,
respectively. As expected from the reconstructed
images in figure 2 to figure 4, the GNPI method
has for the
regularization parameter in the IE and CC plots,

smaller and bigger values given

respectively, which means the proposed method
gives better reconstruction performance compared to
the GN method.

V. Conclusions

This paper is concerned with reducing the condition
the
therefore enhancing the spatial resolution

ill-posedness, and
in the

ERT inverse problem. In this paper, prior knowledge

number and diminishing

of the homogeneous data is employed to improve
the of  the
Gauss—Newton method in two-phase flow fields.

spatial  resolution conventional
Moreover, image segmentation is used to extract the

background elements from the target elements and

to make more uniform distribution in the
background regions. Numerical experiments were
carried out to evaluate the reconstruction

performance of the proposed method. After prior
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information and image segmentation are
implemented into the image reconstruction, improved
results are obtained with the aid of the proposed
scheme compared to the conventional Gauss—Newton

method.
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