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1. INTRODUCTION 
Electrical impedance tomography (EIT) plays an important 

role as a new monitoring tool for engineering applications 
such as biomedical imaging and process tomography, due to 
its relatively cheap electronic hardware requirements and 
nonintrusive measurement property [1-3]. In EIT, different 
current patterns are injected to the unknown object through 
electrodes and the corresponding voltages are measured on its 
boundary surface. The physical relationship between inner 
resistivity (or conductivity) and boundary surface voltage is 
governed by the nonlinear Laplace equation with appropriate 
boundary conditions, so that it is impossible to obtain the 
closed-form solution for the resistivity distribution. Hence, the 
internal resistivity distribution of the unknown object is 
computed using the boundary voltage data based on various 
reconstruction algorithms. 

Yorkey et al. [4] developed a modified Newton-Raphson 
(mNR) algorithm for a static EIT image reconstruction and 
compared it with other existing algorithms such as 
backprojection, perturbation and double constraints methods. 
They concluded that the mNR reveals relatively good 
performance in terms of convergence rate and residual error 
compared to those of the other methods. However, in real 
situations, the mNR method is often failed to obtain 
satisfactory images from physical data due to large modeling 
error, poor signal to noise ratios (SNRs) and ill-conditioned 
(ill-posed) characteristics. That is, the ratio between the 
maximum and minimum eigenvalues of the information 
matrix (or Hessian matrix) is very large. In particular, the 
ill-conditioning of the information matrix results in an 
inaccurate matrix inverse so that the resistivity update process 
is very sensitive to the modeling and measurement errors. So, 
there is considerable interest in techniques for optimization 
that rely on measurements of the cost function only, not on 
measurements (or direct calculations) of the gradient (or 
higher order derivatives) of the cost function. 

One of the techniques using only cost function 
measurements that has attracted considerable recent attention 
for difficult multivariate problems is the simultaneous 
perturbation stochastic approximation (SPSA) method 
introduced in Spall [5] and more fully analyzed in Spall [6]. 
SPSA is based on a highly efficient and easily implemented 
“simultaneous perturbation” approximation to the gradient: 
this gradient approximation uses only two cost function 
measurements independent of the number of parameters 

(say, p ) being optimized. This contrasts, for example, with 

the standard (two-sided) finite-difference stochastic 

approximation (FDSA) [7], which uses 2 p  function 

measurements to approximate the gradient. 
The major difficulties in impedance imaging are in the 

nonlinearity of the problem itself and the poor sensitivity of 
the boundary voltages to the resistivity of the flow domain 
deep inside. Several researchers suggested various element or 
mesh grouping methods where they force all meshes 
belonging to certain groups to have the same resistivity values 
[8,9].  

In this paper, we will discuss the image reconstruction in 
EIT based on combining SPSA and mNR algorithms. We have 
broken the procedure for obtaining the internal resistivity 
distribution into two steps. In the first step, each mesh is 
classified into three mesh groups: target, background, and 
temporary groups. After a few iteration of mNR algorithm, an 
absolute values of meshes can not be determined but some 
useful informations on the target images be given. So, we use 
the mNR algorithm to determine the resistivity of meshes and 
rearrange the resisitivity values of meshes by sorting them in 
ascending order. Then the boundary location between regions 
can be roughly decided and mesh be determined to the target, 
background, or undetermined temporary group. In the second 
step, the values of these resistivities are determined using 
SPSA algorithm. This two-step approach allows us to better 
constrain the inverse problem and subsequently achieve a 
higher spatial resolution 

2. IMAGE RECONSTRUCTION USING SPSA 

ALGORITHM IN EIT 

The numerical algorithm used to convert the electrical 

measurements at the boundary to a resistivity distribution is 

described here. The algorithm consists of iteratively solving 

the forward problem and updating the resistivity distribution 

as dictated by the formulation of the inverse problem. The 

forward problem of EIT calculates boundary potentials with 

the given electrical resistivity distribution, and the inverse 

problem of EIT takes potential measurements at the boundary 

to update the resistivity distribution. 

2.1 The forward problem 
The first When electrical currents ( 1, , )lI l L=  are 

injected into the object 2RΩ ∈  through electrodes 
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( 1, , )le l L=  attached on the boundary ∂Ω  and the 

resistivity distribution ( , )x yρ  is known over Ω , the 

corresponding induced electrical potential ( , )u x y  can be 

determined uniquely from the nonlinear Laplace equation 

which can be derived from the Maxwell equation, Ohm’s law, 

and the Neumann type boundary condition. The complete 

electrode model takes into account both the shunting effect of 

the electrode and the contact impedances between the 

electrodes and the object. The equations of complete electrode 

model are 

1( ) 0  in  uρ −∇ ⋅ ∇ = Ω            (1) 
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where lz  is effective contact impedance between the l th 

electrode and the object, lU  is the measured potential at the 

l th electrode and n  is outward unit normal. In addition, we 

have the following two conditions for the injected currents and 

measured voltages by taking into account the conservation of 

electrical charge and appropriate selection of ground electrode, 

respectively. 
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The computation of the potential ( , )u x y  for the given 

resistivity distribution ( , )x yρ  and boundary condition lI

is called the forward problem. The numerical solution for the 

forward problem can be obtained using the finite element 

method (FEM). In the FEM, the object area is discretized into 

small elements having a node at each corner. It is assumed that 

the resistivity distribution is constant within an element. The 

potential at each node is calculated by discretizing (1) into 

Yu c= , where u  is the vector of boundary potential, c  the 

vector of injected current patterns and the matrix Y  is a 

functions of the unknown resistivities. 

2.2 The inverse problem 

The inverse problem, also known as the image 

reconstruction, consists in reconstructing the resistivity 

distribution ( , )x yρ  from potential differences measured on 

the boundary of the object. Ideally, knowing the potential on 

the whole boundary makes the correspondence between the 

resistivity distribution and the potential biunique. The 

relatively simple situation depicted so far does not hold 

exactly in the real world. The methods used for solving the 

EIT problem search for an approximate solution, i.e., for a 

resistivity distribution minimizing some sort of residual 

involving the measured and calculated potential values. From 

a mathematical point of view, the EIT inverse problem 

consists in finding the coordinates of a point in a 

M-dimensional hyperspace, where M is the number of discrete 

elements whose union constitutes the tomographic section 

under consideration. In the past, several EIT image 

reconstruction algorithms for the current injection method 

have been developed by various authors. A review of these 

methods is given in [10]. To reconstruct the resistivity 

distribution inside the object, we have to solve the nonlinear 

ill-posed inverse problem. Regularization techniques are 

needed to weaken the ill-posedness and to obtain stable 

solutions.

Generalized Tikhonov regularized version of the EIT 

inverse problem can be written in the form [3] 

2 2( ) min{|| ( ) || || || }U V R
ρ

ρ ρ λ ρΨ = − +     (5) 

where NRρ ∈ is the resistivity distribution. ( ) LKV Rρ ∈  is 

the vector of voltages obtained from the model with known 

ρ , LKU R∈ are the measured voltages and R  and λ  are 

the regularization matrix and the regularization parameter, 

respectively. L  and K  are the numbers of electrodes on 

the surface and injected current patterns, respectively. There 

are many approaches in the literature [11-14] to determine R

and α, but the usual choice is to fix MR I=  with the identity 

matrix and to adjust λ  empirically. 

Minimizing the objective function ( )ρΨ  gives an equation 

for the update of the resistivity vector 
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where the partial derivative of Ψ  with respect to ρ  has 

been approximately by a Taylor series expansion around kρ .

The Jacobian kJ  is a matrix composed of the derivative of 

the vector of predicted potentials with respect to the unknown 

resistivities. The Jacobian is derived from the finite element 

formulation given by 

k

kJ
ρρ

∂Ψ=
∂

. The Hessian kH  is the 

second derivative of the predicted potentials with respect to 

the resistivity and is approximated as the square of the 

Jacobian for computational efficiency. Since the objective 

function ( )ρΨ  is multimodal (i.e., it presents several local 

minima), the inversion procedure does not always converge to 

the true solution. The reconstruction algorithms are likely to 

be trapped in a local minimum and sometimes the best 

solution of a static EIT problem is rather unsatisfactory. 

This study attempts to apply SPSA to EIT image 

reconstruction. The characteristics of SPSA algorithms 

appears to be of value in EIT reconstruction; no evaluation of 
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function derivatives is needed. The preceding considerations 

suggest the viability of employing SPSA’s for the solution of 

the EIT problem, according to the procedure described in the 

following section. 

2.3 The basic SPSA algorithm 

The goal is to minimize a cost function ( ),E θ  where the 

cost function is a scalar-valued "performance measure" and 

θ  is a continuous-valued P-dimensional vector of parameters 

to be adjusted. The SPSA algorithm works by iterating from 
an initial guess of the optimal, where the iteration process 
depends on the above-mentioned highly efficient 
"simultaneous perturbation" approximation to the gradient 

( ) ( ) /g Eθ θ θ≡ ∂ ∂ .

Assume that measurements of the cost function are 

available at any value of θ :

( ) ( )y E noiseθ θ= +

For example, in a Monte Carlo simulation-based optimization 

context, ( )E θ  may represent the mean response with input 

parameters θ , and ( )y θ may represent the outcome of one 

simulation experiment at θ  . In some problems, exact cost 

function measurements will be available. This corresponds to 

the 0noise =  setting (and in the simulation example, would 

correspond to a deterministic non-Monte Carlo-simulation). 
Note that no direct measurements (with or without noise) of 
the gradient are assumed available. This measurement 
formulation is identical to that of the FDSA algorithm and 
most implementations of genetic optimization algorithms and 
simulated annealing. It differs from Newton-Raphson search, 
and maximum likelihood scoring, all of which require direct 

measurement or calculation of ( )g θ .

It is assumed that ( )E θ is a differentiable function of θ
and that the minimum point θ ∗  corresponds to a zero point 

of the gradient, i.e., 

( )
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In cases where more than one point satisfies (7), then the 
algorithm may only converge to a local minimum (as a 
consequence of the basic recursive form of the algorithm there 
is generally not a risk of converging to a maximum or 

saddlepoint of ( )E θ , i.e., to nonminimum points where 

( )g θ  may equal zero). The modifications of basic SPSA 

algorithm allow it to search for the global solution among 
multiple local solutions. Note also that (7) is generally 
associated with unconstrained optimization; however, through 
the application of penalty function and/or projection methods, 
it is possible to use (7) in a constrained problem (i.e., one 

where the θ  values are not allowed to obtain certain values, 

usually as specified through equality and inequality constraints 

on the values of θ  or ( )E θ .

2.4 The SPSA algorithm approach to EIT 

In some applications like visualization of two-component 

systems, we may assume that there are only two different 

representative resistivity values; one resistivity value for the 

background and the other for the target. Here, the target need 

not be a single segment. It may be composed of multiple 

segments of the same resistivity value [15].  

In this paper, we will discuss the image reconstruction in EIT 

using two-step approach. We have broken the procedure for 

obtaining the internal resisitivity distribution into two steps. In 

the first step, we adopted a mNR method as a basic image 

reconstruction algorithm. After a few initial mNR iterations 

performed without any grouping, we classify each mesh into 

one of three mesh groups: BackGroup (or TargetGroup) is the 

mesh group with the resistivity value of the background (or 

target). TempGroup is the group of meshes neither in 

BackGroup nor in TargetGroup. All meshes in BackGroup and 

in TargetGroup are forced to have the same but unknown 

resistivity value ( backρ  and tarρ ), respectively. However, all 

meshes in TempGroup can have different resistivity vaules 

( , ,  1, , 2temp i i nρ = − ).

The SPSA reconstruction algorithm for EIT can be 

formulated as follows. We will iteratively reconstruct an 

image that fits best the measured voltages lU  at the l th 

electrode. To do so, we will calculate at each iteration the 

pseudo voltages ( )lV ρ  that correspond to the present state of 

the reconstructed image. We assume that, by minimizing the 

difference between the measured voltages and the pseudo 

voltages, the reconstructed image will converge towards the 

sought-after original image. Therefore we choose as cost 

function a following function of the relative difference 

between the computed and measured potentials on the object 

boundary 
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The step-by-step summary below shows how SPSA 

iteratively produces a sequence of estimates [16].  

Step 1 Initialization and coefficient selection. 

Set counter index 0k = . Pick initial guess θ̂ and

nonnegative coefficients , , ,a c A α , and γ  in the SPSA 

gain sequences /( 1)ka a A k α= + +  and /( 1)kc c k γ= + .

Practically effective (and theoretically valid) values for α
and γ  are 0.602 and 0.101, respectively (the asymptotically 

optimal values of 1.0 and 1/6 may also be used). 

Step 2 Generation of simultaneous perturbation vector.

Generate by Monte Carlo a p-dimensional random 

perturbation vector k∆ , where each of the p components of 

k∆ are independently generated from a zero-mean probability 

distribution satisfying the conditions in Spall [6]. A simple 

(and theoretically valid) choice for each component of k∆ is 

to use a Bernoulli 1± distribution with probability of 0.5 for 

each 1±  outcome.

Step 3 Cost function evaluations.  

Obtain two measurements of the cost function ( )E  based on 
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the simultaneous perturbation around the current kθ :

( )k k ky cθ + ∆  and ( )k k ky cθ − ∆  with the kc and k∆ from 

Step 1 and 2. 

Step 4 Gradient approximation.  

Generate the simultaneous perturbation approximation to the 

unknown gradient ˆ( )kg θ :

1
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Where ki∆  is the i th component of the k∆ vector (which 

may be 1±  random variables as discussed in Step 2). Note 

that the common numerator in all p  components of ( )kkg θ
reflects the simultaneous perturbation of all components in 

kθ  in contrast to the component-by-component perturbations 

in the standard finite-difference approximation. 

Step 5 Updating θ  estimate.  

Use the standard stochastic approximation from  

1 ( )k k kk ka gθ θ θ+ = −

To update kθ  to a new value 1kθ + .

Step 6 Iteration or termination.  

Return to Step 2 with 1k +  replacing k . Terminate the 

algorithm if there is little change in several successive iterates 
or the maximum allowable number of iterations has been 
reached.  

The choice of the gain sequences ( ka and kc ) is critical to 

the performance of SPSA. With α and γ as specified in Step 

1, one typically finds that in a high-noise setting it is necessary 
to pick a smaller a  and larger c  than in a low-noise setting. 

Although the asymptotically optimal values of α and γ are 

1.0  and 1/ 6 , respectively, it appears that choosing 1.0α <
usually yields better finite-sample performance through 
maintaining a larger step size; hence the recommendation in 

Step 1 to use values ( 0.602  and 0.101) that are effectively 

the lowest allowable satisfying the theoretical conditions 
mentioned [6]. In a setting where a large amount of data are 
likely to be available, it may be beneficial to convert to 

1.0α =  and 1/ 6γ =  at some point in the iteration process 

to take advantage of their asymptotic optimality  

3. COMUTER SIMULATION 

The proposed algorithm has been tested by comparing its 

results for numerical simulations with those obtained by mNR 

method. For the current injection the trigonometric current 

patterns were used. For the forward calculations, the domain 

Ω  was a unit disc and the mesh of 3104 triangular elements 

(M=3104) with 1681 nodes (N=1681) and 32 channels (L=32) 

was used as shown in Figure 1(a). A different mesh system 

with 776 elements (M=776) and 453 nodes (N=453) was 

adopted for the inverse calculations as shown in Figure 1(b). 

In this paper, under the assumption that the resistivity varies 

only in the radial direction within a cylindrical coordinate 

system [16], the results of the two inverse problem methods 

can be easily compared. The resistivity profile given to the 

finite element inverse solver varies from the center to the 

boundary of object and is divided into 9 radial elements 

( 1 9, ,ρ ρ ) in Figure 1(b). 

(a)

(b)

Fig. 1 Finite element mesh used in the calculation. (The resis- 
tivities of the elements within an annular ring are identical.) 

(a) mesh for forward solver, (b) mesh for inverse solver 

The resolution of the method is determined by a number of 

variables including restivity contrast and distribution, position 

within the domain, and even current patterns. The ability to 

positively distinguish between two similar resistivity 

distributions also depends upon the precision of the voltage 

measurements. These factors necessitate caution when 

designing an experiment and interpreting results. Therefore, to 

verify the appropriateness of EIT for this application, a 

computational experiment was conducted. 

Synthetic boundary potentials were computed for idealized 
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resistivity distributions using the finite element method 

described earlier. The boundary potentials were then used for 

inversion and the results were compared to the original 

resistivity profiles. The resistivity profile appearing in Figure 

2 contains two large discontinuities in the original resistivity 

distribution. The present example is a severe test in EIT 

problems because there are large step changes at /r R =0.56 

and 0.81 preventing electric currents from going into the 

center region. 

Fig. 2 True resistivities (solid line) and computed resistivities  
using mNR (dashed line) and SPSA (dotted line). 

We started the mNR iteration without any mesh grouping 

with a homogeneous initial guess. In Table 1, we see that the 

mNR algorithm may roughly estimate the given true 

resistivities. Since the mNR have a large error at the boundary 

of target and background in Figure 2, we can not obtain 

reconstructed images of high spatial resolution. This kind of 

poor convergence is a very typical problem in the NR-type 

algorithms.  

Table 1 The caption should be placed before the table. 

1ρ 2ρ 3ρ 4ρ 5ρ 6ρ 7ρ 8ρ 9ρ

Real 0.5 0.5 0.5 0.5 0.6 0.6 0.5 0.5 0.5

mNR .521 .497 .483 .538 .603 .572 .496 .502 .499

SPSA .511 .500 .500 .506 .596 .596 .500 .500 .500

However, we can significantly improve the mNR’s poor 

convergence by adopting the proposed SPSA via a two-step 

approach as follows. In the first step, we adopted a mNR 

method as a basic image reconstruction algorithm. After a few 

initial mNR iterations performed without any grouping, we 

rearrange the resisitivity values of meshes by sorting them in 

ascending order. Then the boundary location between regions 

can be roughly decided and mesh be determined to the target, 

background, or undetermined temporary group. In this paper, 

from the Table 1, 2 meshes ( 5 6,ρ ρ )  and 5 meshes 

( 2 3 7 8 9, , , ,ρ ρ ρ ρ ρ ) among 9 may be grouped to TargetGroup 

( tarρ ) and BackGroup ( backρ ), respectively. The remainders 

of meshes ( 1 4,ρ ρ ) are grouped to TempGroup. Hence, the 

number of unknowns is reduced to 4.  

In the second step, after mesh grouping, we will determine 
the values of these resistivities using SPSA algorithm. The 
SPSA solves the EIT problem, searching for the resistivities 

( 1 4,ρ ρ , tarρ  and backρ ) minimizing the reconstruction error. 

In this case, we will use backρ  (or tarρ ) as the minimum (or 

maximum) values of the unknown resistivity distribution. The 
computed resistivities in SPSA are constrained between the 
minimum and maximum values. The initial values of unknown 

tarρ  and backρ  are the average resistivity values of meshes 

in BackGroup and TargetGroup, respectively. From Figure 2 
and Table 1, the inverted profile using SPSA matches the 

original profile very well near the wall at /r R =1.0 as well as 

the center at /r R =0.0. Furthermore, the SPSA reconstruction 

is successful for the jump of resistivty at /r R =0.56 and 0.81.  

4. CONCLUSION 

In this paper, an EIT image reconstruction method based on 

SPSA via two-step approach was presented to improve the 

spatial resolution. A technique based on SPSA algorithm with 

the knowledge of mNR was developed for the solution of the 

EIT inverse problem. Although SPSA is expensive in terms of 

computing time and resources, which is a weakness of the 

method that renders it presently unsuitable for real-time 

tomographic applications, the exploitation of a priori 

knowledge will produce very good reconstructions. Further 

extensions include an EIT image reconstruction to 

multi-resistivity value problems. 
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