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I. INTRODUCTION 

The phase contrast imaging technique developed by 
Zernike [1] is noninvasive, which makes it suitable for 
observing live cells. However, phase contrast images are 
usually surrounded by halos obscuring the details along 
the boundaries of the specimen, making it unsuitable for 
direct image segmentation or measurement. Therefore, 
image restoration is crucial for producing artifact-free 
images, which are useful for automated image 
segmentation and analysis. 

The linear imaging model for microscopic image 
formation can be described mathematically using a point 
spread function (PSF), which indicates how a point in the 
object space is spread out in the image. Thus, the relation 
between the ideal image x and the recorded image y is a 
convolution procedure on a background followed by the 
addition of noise: 

   𝑦𝑦 = ℎ ∗ 𝑥𝑥 + 𝑏𝑏 + 𝑛𝑛        (1) 
where* denotes 2D convolution, and b and n indicate 
background and noise, respectively. The first step for 
image restoration is to remove the background to produce 

a flat background. Background estimation methods have 
been described previously [2 – 5]. After preprocessing, (1) 
can be written in matrix notation 

   y = Hx + n         (2) 
The PSF is often band-limited, such that its frequency 
response displays zero or near-zero values at high 
frequency. Therefore, the direct inverse of the PSF with 
the blurred image will amplify noise enormously [6 – 9], 
and the problem (2) is well known as an ill-posed problem. 
A classical way to overcome an ill-posed problem is to 
replace it with a well-posed problem by incorporating 
regularization terms into the least-squares estimation. 
Tikhonov regularization is the most commonly used 
technique for least-squares estimation [10, 11]. 

Image restoration problems with constraints have been 
investigated widely [12 – 17]. In this paper, we formulate 
the image restoration problem as a constrained convex 
optimization problem, and a finite step method (FSM) for 
its solution is proposed. The outline of this paper is as 
follows. In section 2, we describe the image restoration 
model as a minimization problem of convex cost function, 
which consists of a least-squares fitting term incorporating 
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Gaussian filter and regularization terms with nonnegative 
constraints. We propose a FSM to solve the obtained 
optimization problem. In section 3, we apply the proposed 
method to the phase contrast microscopic image 
restoration problem. We provide some numerical 
examples and compare our proposed method with that of 
Yin et al. [18] and the gradient projection method (GPM) 
[19]. Finally, we conclude this work in section 4. 
 

II. METHODS 
 

1. Description of the Model 

As a preprocessing step, it is first necessary to remove 
the background from recorded microscopic images to 
produce a flat background and compensate for non-
uniform illumination [20]. We estimate the background 
using the “rolling ball” algorithm proposed previously [2]. 
The corrected image is computed by subtracting the 
estimated background image from the recorded image. 
Next, we apply a Gaussian filter to the recorded image to 
reduce the influence of noise on the performance of the 
image restoration algorithm [21]. We can compensate for 
the excessive blurring of the Gaussian filter by convolving 
the PSF with the same Gaussian filter. Therefore, we 
consider the following model for restoration of the 
microscopic image 
 

   min f(x) = ‖Gy− GHx‖2
2 + λxTLx + μ‖x‖1     

                                           s. t. x ≥ 0              (3) 
where G is a Gaussian filter matrix, L is a Laplacian 
matrix defining the smoothness regularization, and λ, μ 
are the regularization parameters. Problem (3) can be 
rewritten as follows: 

minf(x) = xTCx − 2dTx + (Gy)TGy  s. t. x ≥ 0    (4)                                                
where 
        C = (GH)TGH + λL

        d = (GH)TGy−
μ
2

 

It is easy to verify that C  is the positive definite 
symmetric matrix, f(⋅)  is a strictly convex quadratic 
function, and the constraint set is convex. Therefore, 
problem (4) will be a constrained convex optimization 
problem. 
 
2. Finite step method 

We consider the constrained quadratic minimization 
problem 

    minf(x) = 1
2

xTCx − dTx,    x ∈ Ω         (4) 
        Ω = {x ∈ ℝn|xj ≥ 0, j = 1,2, . . . , n}       (5) 

where C  is a positive definite symmetric matrix and 
d ∈ ℝn  is the given vector. We formulate the optimal 
condition for problem (5) – (6). 

 
Theorem 1. Let x∗ ∈ Ω . Then x∗  is a solution of 
problem (5) – (6) if and only if 
 
 

 �x
∗TCx∗ − dTx∗ = 0

Cx∗ − d ≥ 0
�         (6) 

 

Proof. Necessity. We construct a Lagrange function for 
problem (5) – (6) 

L(x, λ0, λ) = λ0(
1
2

xTCx − dTx) − λTx, 

where     
(x, λ) ∈ ℝn × Λ, λ0 ∈ ℝ, λ0 ≥ 0,Λ = {λ ∈ ℝn |λj ≥ 0, j = 1,2, … , n}. 

Let x∗ be a solution of the considered problem. We write 
the optimal condition for problem (5) – (6) at the point x∗ 
using the Lagrange function. Then, there exists a number 
λ0
∗  and a vector λ∗ = (λ1

∗ , … , λn
∗ ) such that the following 

condition holds 

 

⎩
⎪
⎨

⎪
⎧Lx

′ (x∗, λ0
∗, λ∗) = 0           

λj
∗xj

∗ = 0, j = 1,2, … , n  
λ0

∗ ≥ 0, λ∗ ≥ 0               
λ0

∗ + ‖λ∗‖ ≠ 0                 

�         (7) 

It is easy to show that this condition is equivalent in the 
following form 

 

⎩
⎪
⎨

⎪
⎧
λ0
∗(Cx∗ − d) − λ∗ = 0
λ∗Tx∗ = 0
λ0
∗ ≥ 0, λ∗ ≥ 0
λ0
∗ + ‖λ∗‖ ≠ 0.

�        (8) 

It is obvious that λ0
∗ > 0. If λ∗ = 0, then λ0

∗ ≠ 0 and 
f′(x∗) ≜ Cx∗ − d = 0. Hence, condition (7) holds trivially. 
In this way, it is easy to obtain condition (7) in the case of 
λ∗ ≠ 0. Thus, we have established that conditions (7) and 
(9) are equivalent. 
 
Sufficiency. By the convexity of function f(x), we have 
f(x) − f(x∗) ≥ (x − x∗)Tf′(x∗). 
Given that f ′(x∗) = Cx∗ − d, this inequality becomes 
 f(x) − f(x∗) ≥ xT(Cx∗ − d) − x∗T(Cx∗ − d) 
By virtue of condition (7), we obtain f(x) − f(x∗) ≥ 0 for 
all x ∈ Ω, which completes the proof.  
By introducing the index set 
 I(x) = {i|xi = 0, 1 ≤ i ≤ n} 
at a point x ∈ Ω, then the optimality condition (7) for 
problem (5) – (6) can be reformulated as follows. 
 
Theorem 2. x∗ is a solution for problem (5) – (6) if and 
only if 
 

     �
(Cx∗)j − dj = 0, j ∉ I(x∗)
(Cx∗)j − dj ≥ 0, j ∈ I(x∗), j = 1,2, … , n

� (9) 
 

We define the auxiliary problem in the following form: 

    
minf(x), x ∈ ΩI ,
ΩI = {x ∈ ℝn|xi = 0, i ∈ I},  (10) 
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where I is a subset of indices {1,2, … , n}. 
The following lemma establishes a connection between 
problems (5) – (6) and (11). 
 
Lemma 2. If x∗ is a solution for problem (5) – (6), then it 
becomes a solution to problem (11) for I = I(x∗). 
Proof. If I(x∗) = ∅, then it is obvious that x∗ > 0, and 
theorem 2 implies that f′(x∗) = Cx∗ − d = 0.  On the 
other hand, x∗ = C−1d is a solution of (11). Thus, the 
assertion of the theorem holds in this case. Let I(x∗) ≠ ∅. 
We write the Lagrange function for the problem (11) 
 

L�(x, λ0, λI) = λ0f(x) −� ‍
j∈I

λjxj , 

where λ0 ∈ ℝ and λI = {λj |j ∈ I} ∈ Rm(I)  are Lagrange 
multipliers, m(I)  is the cardinality of the set I , and 
m(I) = m(I(x∗)). As x∗ is the solution of problem (5) – 
(6), then it satisfies condition (8), particularly for number 
j, such that j ∈ I(x∗) 
 

 �
λ0
∗(Cx∗ − d)j − λj

∗ = 0
λ0
∗ ≥ 0,  λj

∗ ≥ 0
�       (11) 

 

We show that λ0
∗ > 0 holds in (12). Indeed, if λ0

∗ = 0, 
then (12) implies λj

∗ = 0, ∀j ∈ I(x∗). 
On the other hand, it is easy to see that λj

∗ = 0, j ∉ I(x∗) 
according to condition (8). This contradicts condition 
λ0
∗ + ‖λ∗‖ > 0. In addition, it is easy to see that there 

exists a λj
∗ such that λj

∗ ≠ 0, j ∈ I(x∗). As 
 

∂L�(x∗, λ0
∗ , λI)

∂xj
= λ0

∗(Cx∗ − d)j,∀j ∉ I = I(x∗), 

then by condition (10) we obtain  
 

 ∂L�(x∗,λ0
∗ ,λI)

∂xj
= 0, j ∉ I,      (12) 

Combining conditions (12) and (13), we have 
 

 �
∂L�(x∗,λ0

∗ ,λI)
∂xj

= 0

λ0
∗ ≥ 0, ‖λI

∗‖ ≥ 0
�        (13) 

 

It is the necessary condition for the problem (11) with 
Lagrange multipliers (λ0

∗ , λI
∗) = (λ0

∗ , λj
∗), j ∈ I(x∗)  at the 

point x∗ . As problem (11) is convex, then (14) also 
becomes a sufficient condition. Consequently, the point 
x∗ is the solution of problem (11), which completes the 
proof.  

Before we consider the numerical method for solving 
problem (5) – (6), we introduce a definition for a 
stationary point. 

Definition 1. v ∈ ℝn  is called a stationary point for 

problem (5) – (6) if v ∈ Ω and  is a solution of (11) for 
some I ⊂ {1,2, … , n}. 
 
Proposition 1. There exists an FSM for solving problem 
(5) – (6). 
 
Proof. As the set {1,2, … , n}  has a finite number of 
subsets I, and the problem (11) has a unique solution by 
virtue of the strong convexity of the function f(x), then 
the number of stationary points of the problem (5) – (6) is 
finite. By Lemma 2, to find the solution of problem (5) – 
(6), it is sufficient to look through all of its stationary 
points and identify the one that minimizes the value of the 
function f(x) . As problem (11) is an unconstrained 
minimization problem in the space ℝn−m(I) , then this 
problem can be solved by the conjugate gradient method 
for a finite number of steps, which is less than n − m(I). 
Thus, finding the solution to problem (5) – (6) will finish 
in a finite number of steps.  

In practice, of course, brute force methods for finding 
all the stationary points of problem (5) – (6) would require 
too much computation even for a value of 𝑛𝑛 that is not 
very large. We introduce a more efficient iterative method 
to find stationary points of problem (5) – (6) compared 
with the brute force method. This method can be divided 
into two stages. The first stage involves moving from a 
feasible point x0 ∈ Ω  to a stationary point x� ∈ Ω, such 
that f(x�) ≤ f(x0). In the second stage, we check whether 
the stationary point x� has become a solution to problem 
(5) – (6), and if not, we find a feasible point x�, such that 
f(x�) < 𝑓𝑓(x�). 

As a result, we construct a sequence of stationary points, 
such that the function f(x) is strictly decreasing, and it is 
therefore impossible to return to a stationary point 
obtained previously. Since the number of stationary points 
is finite, when the process of generating the sequence 
terminates, the current stationary point becomes a solution 
to problem (5) – (6). We consider these schemes in detail. 
 
Scheme 1. Moving from a feasible point to a stationary 
point. 

Let x0 ∈ Ω  be a given point. We need to find a 
stationary point x� , such that f(x�) ≤ f(x0) . For this 
purpose, we construct a sequence xk ∈ Ω , k = 1,2, … 
and x�k ∈ ℝn , k = 0,1,2, …  as follows. Assume that 
xk ∈ Ω has already been built for a given k = 0,1, …, 
then we take the solution of problem (11) as x�k , which is 
solved by the conjugate gradient method at I = Ik = I(xk). 
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Note that 
 f(x�k) ≤ f(xk),        (14) 

as xk ∈ ΩI. 
There are two possible cases: x�k ∈ Ω  or x�k ∈ Ω . If 
x�k ∈ Ω, then by definition xk  is a stationary point of 
problem (5) – (6). Let x�k ∈ Ω. Then, we construct a point 
 

     xk+1 = xk + λk(x�k − xk),       (15) 
 

where parameter λk  is determined from the following 
condition 

     λk = max{λ ≥ 0|xk + λ(x�k − xk) ∈ Ω}, (16) 
 

and obviously, λk ≠ 1. 
Using the definition of Ω in problem (5) – (6) and 
definition (17), we can find an explicit formula to 
calculate the parameter λk . 
 
Indeed, from definition (17), we have 
            xi

k + λ(x�i
k − xi

k) ≥ 0, i = 1,2, … , n, 
or 
     xi

k − λ(x�i
k − xi

k) ≥ 0, i = 1,2, … , n. 
 

Hence, we obtain (xi
k − x�i

k) ≤ xi
k ,  i = 1,2, … , n . This 

inequality holds trivially for all i ∈ I(xk), as xi
k = x�i

k = 0. 
We define the index set I1

k  
      I1

k = {i|xi
k − x�i

k > 0, 𝑖𝑖 ∈ I(xk),1 ≤ i ≤ n}. 
As xk ∈ Ω, there exists a number j ∈ {1,2, … , n}\I(xk), 
such that x�j

k < 0 . Furthermore, x�j
k < 0 < xj

k . Hence, 
I1

k ≠ ∅. Then, it is easy to see that λk  is defined as 

            λk = min
j∈I1

k

xj
k

xj − x�j
k =

xj0

xj0 − x�j0
k . 

It is obvious that 0 < λk < 1. By construction of the 
sequence {xk }, we have xk+1 ∈ Ω. On the other hand, 
taking into account (15) and the convexity of f(x), we 
conclude that 
 

       f(xk+1) ≤ λkf(x�k) + (1 − λk )f(xk ) ≤ f(xk). (17) 
 

Verify that I(xk) ⊂ I(xk+1), I(xk) ≠ I(xk+1). Indeed, if 
i ∈ I(xk), then x�i

k = 0 = xi
k , and therefore, xi

k+1 = 0, i.e., 
i ∈ I(xk+1). On the other hand, it is clear that xj0

k+1 = 0, 
and therefore, j0 ∈ I�xk+1�,  but j0 ∈ I�xk�. 
Consequently, the set I(xk+1) contains at least one more 
element than I(xk ). Thus, the following approximation 
xk+1 ∈ Ω is constructed, such that f(xk+1) ≤ f(xk) and 
the set I(xk+1) is substantially wider than I(xk). 
 
However, the set I(xk) ⊂ {1,2, … , n}  cannot expand 
infinitely. Therefore, the described process terminates at 
some 𝑘𝑘-th iteration, and x� = x�k  is a stationary point of 
problem (5) – (6) when x�k ∈ Ω. Thus, by virtue of (15) 
and (18), we have 

f(x�) ≤ f�xk� ≤ f�xk−1� ≤ ⋯ ≤ f(x0). 
 

Note that if f(x�) = f(x0) , then the uniqueness of the 
solution of problem (11) for I = I(x0) implies x� = x0 . 
Thus, x� = x0 or f(x�) < 𝑓𝑓(x0). 
 
Scheme 2. Check the optimality of the stationary point. 
Let the stationary point x� = x�k  be obtained as the result 
of the previous scheme. It is necessary to check that x� is 
the solution of problem (5) – (6) or to find a point x�0, 
such that f(x�0) < 𝑓𝑓(x�). For this purpose, we first need to 
check the optimal condition (7) at point x�, i.e., 

      �x�
TCx� − dTx� = 0

Cx� − d ≥ 0
� 

If this condition holds, then we conclude that x�  is a 
solution of the problem. Otherwise, we need to perform 
one iteration of the GPM [19], starting from the point x�. 
We construct the point x(α) as follows:  
      x(α) = x� − αf ′(x�),α > 0 
Then, the parameter α is determined from the condition 
      f(PrΩ(x(α�))) < 𝑓𝑓(x�). 
The number α� > 0, satisfying the inequalities f(PrΩ(x� −
α�f′(x�))) < 𝑓𝑓(x�), can be found in a finite number of steps 
by checking these inequalities sequentially for α = λk , 
where k = 0,1, … and λ is a fixed number from (0,1) 
until it holds. After the number α�  is found, x�0 =
PrΩ(x� − α�f′(x�))  will be constructed. In this way, we 
construct the FSM to solve the problem (5) – (6), as 
shown in Table 1. 
 
Table 1. Finite step method  

 Definitions: 
𝐱𝐱𝑘𝑘  : estimate of true image 
𝐼𝐼𝑘𝑘  :  index set at 𝐱𝐱𝑘𝑘  
𝐂𝐂 : given positive definite symmetric matrix 
𝐝𝐝 : given vector 

 : constraint set 

𝑃𝑃𝑟𝑟Ω(⋅) : projection function defined by Equation (III.5) 
𝛼𝛼 : step size 
𝛾𝛾,𝑚𝑚 :  parameters used to update 𝛼𝛼 

 Set init ial  conditions:  
 

Initialize 𝐱𝐱𝑘𝑘 ∈ Ω, 𝑘𝑘: = 0 
Set 𝑚𝑚 = 1, 𝛾𝛾 ∈ (0,1) 

 At iteration 𝑘𝑘:𝑘𝑘 = 0,1,2, … 
 Construct the index set 𝐼𝐼𝑘𝑘  at 𝐱𝐱𝑘𝑘 . 

 
 𝐼𝐼𝑘𝑘 = 𝐼𝐼(𝐱𝐱𝑘𝑘) = {𝑖𝑖|𝑥𝑥𝑖𝑖𝑘𝑘 = 0,1 ≤ 𝑖𝑖 ≤ 𝑛𝑛}. 

 Let 𝐱𝐱�𝑘𝑘  be a solution of the problem 
 

min𝐟𝐟(𝐱𝐱), 𝐱𝐱 ∈ Ω𝑘𝑘 , 
 

Ω𝑘𝑘 = {𝐱𝐱 ∈ ℝ𝑛𝑛 |𝑥𝑥𝑖𝑖 = 0, 𝑖𝑖 ∈ 𝐼𝐼𝑘𝑘} 
 

that is solved by conjugate gradient method. 
 If 𝐱𝐱�𝑘𝑘 ∈ Ω, then go to step 5. 
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 Otherwise, construct point 𝐱𝐱𝑘𝑘+1 
 

 𝐱𝐱𝑘𝑘+1 = 𝐱𝐱𝑘𝑘 + 𝜆𝜆𝑘𝑘(𝐱𝐱�𝑘𝑘 − 𝐱𝐱𝑘𝑘), 
 

where 

 𝜆𝜆𝑘𝑘 = min
𝑗𝑗 ∈𝐼𝐼1𝑘𝑘

𝑥𝑥𝑗𝑗
𝑘𝑘

𝑥𝑥𝑗𝑗
𝑘𝑘−𝑥𝑥̅

攳
𝑘𝑘 , 

 𝐼𝐼1𝑘𝑘 = {𝑖𝑖|𝑥𝑥𝑖𝑖𝑘𝑘 − �̅�𝑥𝑖𝑖𝑘𝑘 > 0, 𝑖𝑖 ∈ 𝐼𝐼(𝐱𝐱𝑘𝑘),1 ≤ 𝑖𝑖 ≤ 𝑛𝑛}, 
 
and go to step 1 for 𝑘𝑘: = 𝑘𝑘 + 1. 

 Check optimality condition at point 𝐱𝐱�𝑘𝑘  
 

 �(𝐱𝐱�
𝑘𝑘)𝑇𝑇𝐂𝐂𝐱𝐱�𝑘𝑘 − 𝐝𝐝𝑇𝑇𝐱𝐱�𝑘𝑘 = 0

𝐂𝐂𝐱𝐱�𝑘𝑘 − 𝐝𝐝 ≥ 0.
� 

 
If this condition holds, then 𝐱𝐱�𝑘𝑘  is the solution of the 
problem. 

  Otherwise, find the projection of 𝐯𝐯 for 𝛼𝛼 = 𝛾𝛾𝑚𝑚  on 
Ω : 
𝐯𝐯 = 𝑃𝑃𝑟𝑟Ω(𝐱𝐱�𝑘𝑘 − 𝛼𝛼𝐟𝐟′(𝐱𝐱�𝑘𝑘)). 

  If 𝐟𝐟(𝐯𝐯) < 𝐟𝐟(𝐱𝐱�𝑘𝑘), then go to step 1 for 𝐱𝐱�𝑘𝑘 : = 𝐯𝐯. 

  Otherwise, go to step 6 for 𝑚𝑚: = 𝑚𝑚 + 1. 

 
Theorem 3. The sequence {x�k}, k = 0,1,2, … generated 
by the FSM converges to the solution of problem (5) – (6) 
in a finite number of steps. 
The proof follows directly from the proof of theorem 2 
and the construction of schemes 1 and 2. 
 

III. EXPERIMENTAL RESULTS 
 

The proposed method was tested using a phase contrast 
microscopic image sequence of bovine aortic endothelial 
cells (BAEC), provided by Professor Takeo Kanade’s Cell 
Image Analysis Group in collaboration with Lee E. Weiss, 
Research Professor at the Robotics Institute of Carnegie 
Mellon University, and with Phil Campbell, Research 
Professor at the Institute for Complex Engineered Systems 
of Carnegie Mellon University (Cell Image Analysis Data 
Archive, retrieved April 2, 2013 from 
http://zzyin.vasc.ri.cmu.edu/archive/index.php). Image 
sequences were acquired using a Leica DMI 6000B phase 
contrast microscope at ×10 magnification at 5-min 
intervals over 16 h; 210 images in total were obtained and 
captured at a resolution of 1040 × 1392  pixels per 
image. 

In our experiment, we used theoretical PSF for phase 
contrast microscopy, which is given as [18] 
     h(u, v) = δ(u, v) − airy(√u2 + v2), 
where airy(r) is an obscured Airy pattern [22] 

    airy(r) = R J1(2πRr )
r

− (R − W) J1(2π(R−W)r)
r

 
with the parameters R = 4000 and W = 800, and J1(⋅) 
is the first order Bessel function of the first kind. The 
kernel size of PSF is 11 × 11. We set the initialization as 

f 0 = 0. 

 
Fig. 1. First column: phase contrast microscopic images. Second 
column: restoration results of the first column. 
 

In Figure 1, the first column shows certain phase 
contrast microscopic images with increasing cell densities 
in the view field. The second column shows the respective 
restoration results of the first column. After restoration, 
the cells are revealed with brighter pixels against the 
uniformly black background. 

We evaluate the proposed method according to the 
convergence speed and the accuracy of cell counting in 
comparison with the method of Yin et al. and the GPM. 
To evaluate the convergence speed of image restoration 
methods, we used relative reconstruction error defined in 
[23], 

     RRE = �x(k )−x�
‖x‖

, 

where x is the image to be reconstructed and x(k) is the 
reconstruction after k  iterations. Figure 2 shows the 
relative reconstruction error as a function of the number of 
iterations for three sample images and elapsed times for 
each method. In all experiments, the FSM outperformed 
the method of Yin et al. and the GPM in the number of 
iterations and computational time; even the time for a 
single iteration was higher than that for each of these 
methods. 
 



Finite Step Method for the Constrained Optimization Problem in Phase Contrast Microscopic Image Restoration 

92 

 

 
(a) 
 

 
(b) 

 

 
(c) 

 

Fig. 2. Performance of image restoration methods. 
 
We denote the cell and background as positive (P) and 
negative (N), respectively. 
The accuracy of cell counting is defined as 
 

          ACC = |TP |+|FN |−|FP |
|P|+|FN |

⋅ 100%, 
 

where true positive (TP) represents the cell correctly 
identified as a cell, false positive (FP) represents the 
background incorrectly identified as a cell, and false 
negative (FN) represents the cell incorrectly identified as 
background. Human experts counted cells manually in the 
23rd, 85th, and 136th sample images from the image 
sequence for use as benchmarks. Table 2 shows the 
accuracy of cell counting. The FSM gives the highest 
accuracy for all sample images. 
 
Table 2. Accuracy of cell counting (%). 

Methods Image 23 Image 85 Image 136 
Yin et al. method 66.99 67.43 76.03 
GPM 80.40 84.85 85.97 
FSM 83.82 85.60 88.55 

 

IV. CONCLUSION 
 

The halo effect in phase contrast microscopy causes 
difficulty for automated image analysis. Image formation 
in phase contrast microscopy has been modeled as a 
convolution of the sample with the point spread function 
of the microscope on a background and distorted by 
additive noise. Based on the linear imaging model, we 
formulated an image restoration model as a constrained 
convex optimization problem and incorporated a Gaussian 
filter into our model to reduce the influence of noise on 
the restoration result. We proposed an FSM to solve the 
obtained optimization problem. Our proposed method is 
fast and converges to the global minimum solution. In the 
resulting images, cells are shown as bright objects on a 
uniformly zero background, and the halo effect is 
eliminated completely. The proposed method outperforms 
other methods with regard to accuracy in its application in 
cell counting. In conclusion, the proposed method is a 
promising technique for image restoration, and the results 
could be used for high-quality image processing and 
image analysis tasks, such as cell segmentation and cell 
counting applications.  
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