• Title/Summary/Keyword: ill-conditioning

Search Result 48, Processing Time 0.025 seconds

A Quantitative Performance Input for an Input Observer ( I ) - Analysis in Transient State - (입력관측기의 정량적 성능지표 (I) -과도상태 해석-)

  • Jung, Jong-Chul;Lee, Boem-Suk;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2060-2066
    • /
    • 2002
  • The closed-loop state and input observer is a pole-placement type observer and estimates unknown state and input variables simultaneously. Pole-placement type observers may have poor transient performance with respect to ill-conditioning factors such as unknown initial estimates, round-off error, etc. For the robust transient performance, the effects of these ill-conditioning factors must be minimized in designing observers. In this paper, the transient performance of the closed-loop state and input observer is investigated quantitatively by considering the error bounds due to ill-conditioning factors. The performance indices are selected from these error bounds and are related to the observer robustness with respect to the ill -conditioning factors. The closed-loop state and input observer with small performance indices is considered as a well-conditioned observer from the transient perspective.

A Study on the Application of SVD to an Inverse Problem in a Cantilever Beam with a Non-minimum Phase (비최소 위상을 갖는 외팔보에서 SVD를 이용한 역변환 문제에 관한 연구)

  • 이상권;노경래;박진호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.431-438
    • /
    • 2001
  • This paper present experimental results of source identification for non-minimum phase system. Generally, a causal linear system may be described by matrix form. The inverse problem is considered as a matrix inversion. Direct inverse method can\`t be applied for a non-minimum phase system, the reason is that the system has ill-conditioning. Therefore, in this study to execute an effective inversion, SVD inverse technique is introduced. In a Non-minimum phase system, its system matrix may be singular or near-singular and has one more very small singular values. These very small singular values have information about a phase of the system and ill-conditioning. Using this property we could solve the ill-conditioned problem of the system and then verified it for the practical system(cantilever beam). The experimental results show that SVD inverse technique works well for non-minimum phase system.

  • PDF

Model updating using the feedback exciter (궤환 가진기를 이용한 모델 개선법)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1150-1155
    • /
    • 2001
  • The updating of the FE model to match it with the experimental results needs the modal information. There are two causes where this methodology is ill-equip to deal with; under-determined and ill-conditioning problem. In this research, the feedback exciter which uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains is proposed. The new energy path generated by the feedback exciter changes the modal characteristics of the system and this additional modal information can solve the under-determined problem in the model updating. Through the proper selection of the exciter and sensor locations and the feedback gain, the eigenvalue sensitivity of the updating parameters which cause the ill-conditioning of the sensitivity matrix can be modified. This methodology does not require any additional equipments, makes the acquirement of the additional modal information easy and is robust to the measurement noise.

  • PDF

Tomographic Reconstruction of a Three-Dimensional Flow Field with Limited Interferometric Data

  • Cha, Dong-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.11-22
    • /
    • 2000
  • Holographic interferometric tomography can provide reconstruction of instantaneous three-dimensional gross flow fields. The technique however confronts ill-posed reconstruction problems in practical applications. Experimental data are usually limited in projection and angular scanning when a field is captured instantaneously or under the obstruction of test models and test section enclosures. An algorithm, based on a series expansion method, has been developed to improve the reconstruction under the ill-posed conditions. A three-dimensional natural convection flow around two interacting isothermal cubes is experimentally investigated. The flow can provide a challenging reconstruction problem and lend itself to accurate numerical solution for comparison. The refractive index fields at two horizontal sections of the thermal plume with and without an opaque object are reconstructed at a limited view angle of 80$\circ$. The experimental reconstructions are then compared with those from numerical calculation and thermocouple thermometry. It confirms that the technique is applicable to reconstruction of reasonably complex, three-dimensional flow fields.

  • PDF

Model updating using the feedback exciter : The decision of sensor location & feedback gain (궤환 제어를 이용한 모델 개선법 : 측정 센서 위치와 궤환 이득값 설정)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.802-807
    • /
    • 2002
  • The updating of FE model to match it with the experimental results needs the modal information. There are two cases where this methodology is ill-equip to deal with; under-determined and ill-conditioning problem. The feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains can deal with these problems as the new modal data from the closed loop system generate more constraints the updating parameters should obey. The new modal data from the closed loop system should be different to enhance the condition of the modal sensitivity matrix. In this research, a guide for the selection of the sensor locations and the decision of the corresponding output feedback gains is proposed. This method is based on the sensitivity of the modal data with respect to the feedback gains. Through the proper selection of the exciter and sensor locations and the feedback gain, the eigenvalue sensitivity of the updating parameters which cause the ill-conditioning of the modal sensitivity matrix can be modified and consequently the error contamination in updating parameters are reduced.

  • PDF

Holographic interferometric tomography for reconstructing a three- dimensional flow field (3차원 유동장 측정용 홀로그래피 간섭토모그래피)

  • ;S. S. Cha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.749-757
    • /
    • 1999
  • Holographic interferornetric tomography can provide reconstruction of instantaneous three dimensional gross flow fields. The technique however confronts ill-posed reconstruction problems in practical applications. Experimental data are usually limited in projection and angular scanning when a field is captured instantaneously or under the obstruction of test models and test section enclosures. An algorithm, based on a series expansion method, has been developed to improve the reconstruction under the ill-posed conditions. A three-dimensional natural convection flow around two interacting isothermal cubes is experimentally investigated. The flow can provide a challenging reconstruction problem and lend itself to accurate numerical solution for comparison. The refractive index fields at two horizontal sections of the thermal plume with and without an opaque object are reconstructed at a limited view angle of 80" The experimental reconstructions are then compared with those from numerical calculation and thermocouple thermometry. It confirms that the technique is applicable to reconstruction of reasonably complex, three-dimensional flow fields.elds.

  • PDF

On the Local Identifiability of Load Model Parameters in Measurement-based Approach

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.149-158
    • /
    • 2009
  • It is important to derive reliable parameter values in the measurement-based load model development of electric power systems. However parameter estimation tasks, in practice, often face the parameter identifiability issue; whether or not the model parameters can be estimated with a given input-output data set in reliable manner. This paper introduces concepts and practical definitions of the local identifiability of model parameters. A posteriori local identifiability is defined in the sense of nonlinear least squares. As numerical examples, local identifiability of third-order induction motor (IM) model and a Z-induction motor (Z-IM) model is studied. It is shown that parameter ill-conditioning can significantly affect on reliable parameter estimation task. Numerical studies show that local identifiability can be quite sensitive to input data and a given local solution. Finally, several countermeasures are proposed to overcome ill-conditioning problem in measurement-based load modeling.

A technique to avoid aspect-ratio locking in QUAD8 element for extremely large aspect-ratios

  • Rajendran, S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.633-648
    • /
    • 2011
  • This paper investigates the aspect-ratio locking of the isoparametric 8-node quadrilateral (QUAD8) element. An important finding is that, if finite element solution is carried out with in exact arithmetic (i.e., with no truncation and round off errors), the locking tendency of the element is completely avoided even for aspect-ratios as high as 100000. The current finite element codes mostly use floating point arithmetic. Thus, they can only avoid this locking for aspect-ratios up to 100 or 1000. A novel method is proposed in the paper to avoid aspect-ratio locking in floating point computations. In this method, the offending terms of the strain-displacement matrix (i.e., $\mathbf{B}$-matrix) are multiplied by suitable scaling factors to avoid ill-conditioning of stiffness matrix. Numerical examples are presented to demonstrate the efficacy of the method. The examples reveal that aspect-ratio locking is avoided even for aspect-ratios as high as 100000.

Robust Observer Design for Multi-Output Systems Using Eigenstructure Assignment (고유구조 지정을 이용한 다중출력 시스템의 강인한 관측기 설계)

  • Huh, Kun-Soo;Nam, Joon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1621-1628
    • /
    • 2004
  • This paper proposes a design methodology for the robust observer using the eigenstructure assignment in multi-output systems so that the observer is less sensitive to the ill-conditioning factors such as unknown initial estimation error, modeling error and measurement bias in transient and steady-state observer performance. The robustness of the observer can be achieved by selecting the desired eigenvector matrix to have a small condition number that guarantees the small upper bound of the estimation error. So the left singular vectors of the unitary matrix spanned by space of the achievable eigenvectors are selected as a desired eigenvectors. Also, this paper proposes how to select the desired eigenvector based on the measure of observability and designs the observer with small gain. An example of a spindle drive system is simulated to validate the robustness to the ill-conditioning factors in the observer performance.

IMPROVING THE SOLVABILITY OF ILL-CONDITIONED SYSTEMS OF LINEAR EQUATIONS BY REDUCING THE CONDITION NUMBER OF THEIR MATRICES

  • Farooq, Muhammad;Salhi, Abdellah
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.939-952
    • /
    • 2011
  • This paper is concerned with the solution of ill-conditioned Systems of Linear Equations (SLE's) via the solution of equivalent SLE's which are well-conditioned. A matrix is rst constructed from that of the given ill-conditioned system. Then, an adequate right-hand side is computed to make up the instance of an equivalent system. Formulae and algorithms for computing an instance of this equivalent SLE and solving it will be given and illustrated.