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IMPROVING THE SOLVABILITY OF ILL-CONDITIONED

SYSTEMS OF LINEAR EQUATIONS BY REDUCING THE

CONDITION NUMBER OF THEIR MATRICES

Muhammad Farooq and Abdellah Salhi

Abstract. This paper is concerned with the solution of ill-conditioned
Systems of Linear Equations (SLE’s) via the solution of equivalent SLE’s
which are well-conditioned. A matrix is first constructed from that of

the given ill-conditioned system. Then, an adequate right-hand side is
computed to make up the instance of an equivalent system. Formulae
and algorithms for computing an instance of this equivalent SLE and
solving it will be given and illustrated.

1. Introduction

Ill-conditioned systems of linear equations (SLE’s) are notoriously difficult
to solve to any useful accuracy, [5]. Their matrices are characterized by large
condition numbers. The difficulty may be negotiated by solving different but
equivalent systems which are well-conditioned; well-conditioned SLE’s have
matrices with small condition numbers. The approach we put forward here
constructs a new matrix and a new right-hand side that constitute an instance
of an equivalent SLE to the one given which is ill-conditioned. Moreover, this
new matrix has a small condition number compared to that of the matrix of
the initial SLE. This means that solving this equivalent system must be better
than solving the original one by virtue of the difference in the magnitude of
the condition numbers of their matrices.

Before embarking in the derivation of the necessary formulae and algorithms
to construct such equivalent SLE’s, let us first motivate this approach.

Consider the following system of linear equations (SLE) in two variables.

x+ y = 2,

x+ 1.0001y = 2.
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It has solution x = 2, y = 0. If we change its RHS to (2.0001, 2) the solution
becomes (3.0001,−1). These results, undoubtedly, bear the hallmark of an
ill-conditioned SLE. Let us see why this is so. Draw the lines corresponding
to each equation with a blunt pencil, (Figure 1). The intersection of the two
lines is a set of points. Because the lines are nearly parallel, the candidate
for solution, as can be seen in Figure 1, may vary wildly from (2, 0). Near-
parallelism is what exacerbates inaccuracy by creating a potentially very large
set of solutions from which to pick. If we sharpen our pencil well and draw
again the two lines, the “intersection set” will be reduced dramatically, but
there will still be a lot of points to pick from, (Figure 2). The sharp pencil
here may be interpreted as calculations with high accuracy, while a blunt one
represents low accuracy calculations.

Now, if we cannot do much to the accuracy we have at our disposition,
i.e., we have exhausted the capabilities of our computer, for instance, and as
ill-conditioning is independent of accuracy, then what else can we do? Since
near-parallelism is really the issue, an obvious way is to replace one of the near-
parallel lines by a perpendicular line to either of them, but passing through the
“point of intersection” of the near-parallel lines. If such a line could be found,
then the drawing will have a better defined intersection set particularly if the
pencil is really sharp! (See Figure 3). Note that, although there is only one
perpendicular line to the one we decide to keep passing through the solution, at
that point there is an infinite near parallel lines, each of which being a perfectly
valid replacement to one of the problematic lines.
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Figure 1. Thick line representation of ill-conditioning.
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Figure 2. Thin line representation of ill-conditioning.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 3. Resolution of ill-conditioning.

Let us try this idea on our system. Note that the condition number of the
initial system is ≈ 4002. If we replace the 2nd equation of this system with one
the line of which is perpendicular to that of this 2nd equation, such as

x− y = b′2



942 MUHAMMAD FAROOQ AND ABDELLAH SALHI

the condition number of the matrix of this new system is 1. However, we still
do not know equation 2 explicitly; its RHS, b′, must be calculated first, and
in such a way that this new system be equivalent to the initial one. Write the
new system as

x+ y = 2,

x− y = b′2

and denote it as

(1) A′x=b′.

This gives

x = A′−1b′ = A−1b

with

(2) b′ = A′A−1b.

Putting the values of A′, A−1, and b in (2), we find

b′ =

(
1 1
1 −1

)(
1.0001 −1
−1 1

)(
2
2

)
0.0001

,

(
2
b′2

)
=

(
1 0

2001 −2000

)(
2
2

)
,

which gives us b′2 = 2. With this RHS, the new system has the same solution
as the initial one, and, importantly, it is well-conditioned. If we change the
RHS to (2, 2.0001) and solve, the solution is (2,−0.0001) which is very close to
that of the system before perturbation of the RHS. This simple motivation for
our approach to improving solvability of SLE’s through reducing the condition
number of their matrices can be extended to any ill-conditioned SLE as follows.
Consider, without loss of generality, the extreme case where the matrix of the
given SLE is singular. This can be explained by the presence of at least two
parallel equations leading to the loss of the matrix full-rank. Removing this
parallelism by replacing one of the parallel lines with another which is not
parallel to either of them, or indeed to any other equation in the system, will
restore the matrix of the SLE to full-rank, making it non-singular. This means
that it has a condition number less than infinity. It is therefore clear that
removing the parallelism in a matrix reduces its condition number and hence
ill-conditioning.

In the following, we will present a general approach to generating well-
conditioned SLE’s equivalent to square ill-conditioned ones of any dimension.
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2. General approach

Consider the linear algebraic system Ax=b or Σaijxj = bi, i = 1, . . . , n,
and j = 1, . . . , n. Assume that the last equation is nearly similar (parallel)
to any one of the other equations. We want to replace it with another one
(perpendicular to it), resulting in an equivalent system, A′x=b′, of the form:

n∑
j=1

aijxj = bi, i = 1, . . . , n− 1,

n∑
j=1

a′njxj = b′n.

We, therefore, need to find the left-hand side row vector a′n1, a
′
n2, . . . , a

′
nn, and

the right-hand side b′n.

2.1. Finding the left-hand side vector: Algorithm

Finding a suitable row vector (a′n1, a
′
n2, . . . , a

′
nn), i.e., a vector that is or-

thogonal to (an1, an2, . . . , ann)
T , is straightforward and can be done as follows.

Algorithm. 1. Generate random numbers a′n1, a
′
n2, . . . , a

′
n(n−1).

2. Compute a′nn = −
∑n−1

j=1 anj×a′
nj

ann
.

Note that the random numbers a′n1, a
′
n2, . . . , a

′
n(n−1), should be of the same

magnitude as an1, an2, . . . , ann.

2.2. Computing the right-hand side last entry b′n

Since Ax=b and A′x=b′ are equivalent, we have x = A−1b = A′−1b′, where

A−1 =
adj(A)

|A|
and A′−1 =

adj(A′)

|A′|
with

adj(A) =

 A11 A21 . . . An1

. . . . . .
A1n A2n . . . Ann

 and adj(A′) =

 A′
11 A′

21 . . . A′
n1

. . . . . .
A′

1n A′
2n . . . A′

nn

.

Aij and A′
ij represent the cofactors of corresponding elements of A and A′

respectively, for all i and j. Since only the nth row of the original system has
been changed, it is clear that the cofactors of an1 , a′n1 , an2 , a′n2, . . . , ann, a

′
nn

are the same. Therefore An1 = A′
n1, An2 = A′

n2, . . . , Ann = A′
nn. As the two

systems are equivalent, b′ can be calculated as in (2). More explicitly, we can
write a11 a12 . . . a1n

. . . . . .
a′n1 a′n2 . . . a′nn

 A11 A21 . . . An1

. . . . . .
A1n A2n . . . Ann

 b1
.
bn


△

=

 b1
.
b′n
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or 
∑n

j=1 a1jA1j 0 . . . 0

0
∑n

j=1 a2jA2j 0 . . 0

. . . . . .

. . . . . .∑n
j=1 a

′
njA1j

∑n
j=1 a

′
njA2j . . .

∑n
j=1 a

′
njAnj




b1
b2
.
.
bn


△

=


b1
b2
.
.
b′n


or 

b1
b2
.
.
.∑n

j=1 a′
njA1jb1+

∑n
j=1 a′

njA2jb2+...+
∑n

j=1 a′
njAnjbn

△

 =


b1
b2
.
.
b′n

 .

Now, by identification we have

b′n =

∑n
j=1 a

′
njA1jb1 +

∑n
j=1 a

′
njA2jb2 + ...+

∑n
j=1 a

′
njAnjbn

△
,

or

b′n =

∑n
j=1 a

′
nj(A1jb1 +A2jb2 + ...+Anjbn)

△
,

i.e.,

(3) b′n =

∑n
j=1 a

′
nj(

∑n
i=1 Aijbi)

△
.

The problem, of course, with calculating b′n in this way is the need to compute
△ or A−1 first, which we know are not easy to calculate because of the ill-
conditioning of A. If we can avoid these calculations when computing b′, then
that would improve this formula a great deal. Note that we do not need to
compute A−1 explicitly to find b′n.

3. A better approach to computing b′

The above method may not be as workable as one would wish it to be for
the simple reason that it relies, although only implicitly, on A−1, the inverse
of the matrix of the original system to find the RHS of the equivalent system
with a better behaved matrix. Here we suggest an alternative approach which
relies on the A′−1 to do the same. This is much better since, numerically, A′

is more stable. We follow the same methodology.
Consider (1) again. Write (2) as:

(4) AA′−1b′ = b.
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More explicitly, we can write a11 a12 . . . a1n
. . . . . .

an1 an2 . . . ann

 A′
11 A′

21 . . . A′
n1

. . . . . .
A′

1n A′
2n . . . A′

nn

 b1
.
b′n


△′ =

 b1
.
bn


or 

∑n
j=1 a1jA

′
1j 0 . . . 0

0
∑n

j=1 a2jA
′
2j 0 . . 0

. . . . . .

. . . . . .∑n
j=1 anjA

′
1j

∑n
j=1 anjA

′
2j . . .

∑n
j=1 anjA

′
nj




b1
b2
.
.
b′n


△′ =


b1
b2
.
.
bn


i.e., 

b1
b2
.
.∑n

j=1 anjA
′
1jb1+

∑n
j=1 anjA

′
2jb2+...+

∑n
j=1 anjA

′
njb

′
n

△′

 =


b1
b2
.
.
bn

 .

By comparison we get

bn =

∑n
j=1 anjA

′
1jb1 +

∑n
j=1 anjA

′
2jb2 + ...+

∑n
j=1 anjA

′
njb

′
n

△′

or

bn =

∑n
j=1 anj(A

′
1jb1 +A′

2jb2 + ...+A′
(n−1)jbn−1 +A′

njb
′
n)

△′ .

Multiplying both sides by △′, we get

△′bn =
n∑

j=1

anj(A
′
1jb1 +A′

2jb2 + ...+A′
(n−1)jbn−1) +

n∑
j=1

anjA
′
njb

′
n

and
n∑

j=1

anjA
′
njb

′
n = △′bn −

n∑
j=1

anj(
n−1∑
i=1

A′
ijbi).

Therefore

(5) b′n =
△′bn −

∑n
j=1 anj(

∑n−1
i=1 A′

ijbi)∑n
j=1 anjA

′
nj

.

Theorem 3.1. Expressions (3) and (5) of b′ are equivalent.

Proof. The proof is straightforward since both (3) and (5) are derived from the
equivalence between Ax=b and A′x=b′ and the equation A−1b = A′−1b′. □
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4. The positive definite case

We have considered the case of a general system. It is interesting, however,
to know if gains can be made if the system has a Symmetric Positive Definite
matrix. This case is treated differently in [4]. Here, we can deal with it as
follows. Write the system Ax=b in factored form as

(6) LLTx=b.

Then, extract the equivalent system from (6) as

(7) LTx=bf ,

where

bf = L−1b.

The system Ax=b and (7) are now equivalent and the condition number of L

or LT is the square root of the condition number of A. If the condition number
of L or LT is still considered to be large, then we can improve it by using the
general approach of Section 2, and better still, that of Section 3.

5. A new approach

The above two approaches to compute the RHS of the equivalent but better
behaved system to the one given initially, may not be as practical as one may
wish because of their dependence on the inverse of the coefficient matrices.
Here we suggest a new approach which does not depend on the inverse of
either matrix. This approach relies on the bordering method of Faddeeva, [3].
Since the ill-conditioning is caused by the last row of the coefficient matrix, so
the given matrix A can be regarded as a result of bordering the (n−1)×(n−1)
submatrix of A with the offending row and the last column. We partition our
system as follows assuming that the (n − 1) × (n − 1) submatrix of A is well
behaved.

(8)


a11 a12 . a1,n−1 a1n
. . . . .

an−1,1 an−2,2 . an−1,n−1 an−1,n

an1 an2 . an,n−1 ann




x1

.
xn−1

xn

 =


b1
.

bn−1

bn

 .

The above system can be written in a more compact form as follows(
An−1 u
v ann

)(
y
xn

)
=

(
bn−1

bn

)
,

where An−1, u, v, bn−1 are as per the partition in (8) above and

y =

 x1

.
xn−1

 .
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By the bordering method of Faddeeva [3] we have

(9) x =

(
xn−1

0

)
+

bn − vxn−1

αn

(
qn−1

1

)
,

where xn−1 = A−1
n−1bn−1, qn−1 = −A−1

n−1un−1 and αn = ann − vA−1
n−1u =

ann + vqn−1.
Note that xn−1 and y should not be confused with each other. They are

different as the former is the solution of the incomplete problem while the latter
is the n− 1 entries of the solution to the original problem.

Now replacing the last row of (8), the corresponding equivalent system is as
follows
(10)

a11 a12 . a1(n−1) a1n
. . . . .

an−1,1 an−1,2 . an−1,n−1 an−1,n

a′n1 a′n2 . a′n,n−1 a′nn




x1

.
xn−1

xn

 =


b1
.

bn−1

b′n

 ,

which can also be written as(
An−1 u
v′ a′nn

)(
y
xn

)
=

(
bn−1

b′n

)
.

Again using the bordering approach of Faddeeva, [3], the solution to the equiv-
alent system is

(11) x =

(
xn−1

0

)
+

b′n − v′xn−1

βn

(
qn−1

1

)
,

where
βn = a′nn − v′A−1

n−1u = a′nn + v′qn−1.

But, since (8) and (10) are equivalent, from (9) and (11) we can write

(12) b′n = v′xn−1 +
βn

αn
(bn − vxn−1).

Theorem 5.1. Expressions (9) and (11) are equivalent.

Proof. Putting the value of b′n in (11) and simplifying we get the result in (9).
To prove the other part, from (12)

bn = vxn−1 +
αn

βn
(b′n − v′xn−1).

Putting this value of bn in (9) we get (11). □
5.1. Illustration 1

To illustrate, consider the partitioned system

(13)


2 5 7 9
4 8 2 3
3 1 5 −10

2.0001 5.0001 7.0001 9.0001




x1

x2

x3

x4

 =


0.5
7
9
1

 ,



948 MUHAMMAD FAROOQ AND ABDELLAH SALHI

which in matrix form is(
An−1 u
v ann

)(
y
xn

)
=

(
bn−1

bn

)
,

where An−1, u, v, bn−1 have obvious values and κ(A) = 6.295709e+005. By (9)
we obtain

x = 1.0e+003


9.789437
−5.220816
−1.321646
1.753026

 .

Now replacing the last row of (13) by the one which is perpendicular to the
first, the new system will be

(14)


2 5 7 9
4 8 2 3
3 1 5 −10
1 3 4 −5




x1

x2

x3

x4

 =


0.5
7
9
b′n

 ,

where b′n is to be computed. Using equation (12), we find

b′n = −1.9925e+004.

Now solving (14) with this new RHS and using result (11)

x = 1.0e+003


9.789437
−5.220816
−1.321646
1.754026

 ,

with κ( A′) = 10.259081. We can see that for the solution of the equivalent
new system we only need a few vector operations because we already have all
the relevant information to solve this new system. It is more stable compared
to the original system, at least from the point of view of condition numbers.

5.2. Computational complexity

Looking at the bordering approach of Faddeeva, [3], again we can conclude
that, provided the offending row is detected beforehand, the solution to an
ill-conditioned n×n linear system of equations, the ill-conditioning of which is
caused by the said offending row or equation, is equivalent to the solution of
the (n− 1)× (n− 1) subsystem of linear equations with 2 right hand sides.

Therefore, computationally, the solution of the system is equivalent to solv-
ing the incomplete (well-behaved) subsystem of dimension n−1 with two right-
hand sides. More explicitly, since the complexity of an n dimensional SLE is
O(n3), and given that the product of an n×n matrix with an n-vector is O(n2),
the time complexity of this approach is O(n3).
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6. Extending the method to handle multiple near-parallel rows of
matrix A

In Section 5 we proposed a method which deals with SLE with two offending
equations (near-parallel). However, if we replace more than one row of A, i.e.,
n−k rows, then we need to calculate the corresponding n−k RHS components of
the equivalent system. To do this we use the idea of block matrices and partition
matrix A such that each block of A is a matrix of compatible dimensions.
Suppose we have an SLE which is ill-conditioned and this ill-conditioning is
caused by the last n− k rows of the system. Then it can be written as
(15)

a11 . a1k a1,k+1 . a1n
. . . . . .

ak1 . akk ak,k+1 . akn
ak+1,1 . ak+1,k ak+1,k+1 . ak+1,n

. . . . . .
an1 . ank an,k+1 . ann




x1

.
xk

xk+1

.
xn

 =


b1
.
bk

bk+1

.
bn

 ,

or, in a more compact form as

(16)

(
Ak U
V M

)(
y
z

)
=

(
d
f

)
,

where Ak is a square matrix of dimension k, U a matrix of dimension k×(n−k),
V a matrix of dimension (n−k)×k andM a matrix of dimension (n−k)×(n−k)
and both Ak and M are regular. If we set

B = M−VA−1
k U,

which is the Schur complement [1, 6] of Ak in A and is of the same dimension
as M, then using the block bordering method of Brezinski [2] which is a gener-
alization of the bordering method of Faddeeva, [3], the solution of system (15)
is

(17) x =

(
y
0

)
+

(
Q
I

)
B−1(f −Vy),

where 0 is the zero vector. Now if we replace the last n−k rows of system (15)
which cause ill-conditioning, the new equivalent system will be
(18)

a11 . a1k a1,k+1 . a1n
. . . . . .

ak1 . akk ak,k+1 . akn
a′k+1,1 . a′k+1,k a′k+1,k+1 . a′k+1,n

. . . . . .
a′n1 . a′nk a′n,k+1 . a′nn




x1

.
xk

xk+1

.
xn

 =


b1
.
bk

b′k+1

.
b′n

 .
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System (18) can be written in a compact form as

(19)

(
Ak U
V′ M′

)(
y
z

)
=

(
d
f ′

)
.

Set B′ = M′ − V′A−1
k U, which is the Schur complement [1, 6] of Ak in A′ and

is of the same dimension as M′. However, f ′ needs to be determined. Again
using the block bordering method of [2], the solution of (19) will be

(20) x =

(
y
0

)
+

(
Q
I

)
B ′−1 (f ′ −V ′y).

Since (16) and (19) are equivalent, so from (17) and (20), after simplification,
we get

(21) f ′ = V′y + B′B−1(f −Vy).

Theorem 6.1. Expressions (17) and (20) are equivalent.

Proof. Putting the entries of f′ in (20) and simplifying we get the result in (17).
To prove the other part, from (21) we have

f = Vy+ BB′−1(f′ −V′y).

Putting this value of f in (17) gives result (20). The theorem follows. □

6.1. Illustration 2

Consider

Ax =


2 5 7 9 1
4 8 2 3 −1
−1 0 −4 1 2

2.0001 5.0001 7.0001 9.0001 1.0001
4.0001 8.0001 2.0001 3.0001 −1.0001




x1

x2

x3

x4

x5

 =


1
−1
0
7
5

 = b,

with κ(A) = 5.094029e+005. In a more compact form(
Ak U
V M

)(
y
z

)
=

(
d
f

)
,

where Ak,U, V, M, d and f have obvious values and the solution of the system
is

x = 1.0e+005


1.2088
−0.6485
−0.2338
0.2735
−0.0000

 .

The Schur complement of Ak in A is

B = 1.0e−003

(
0.2194 0.2226
0.2194 0.0226

)
.
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To improve κ(A), replace the last two rows of A to get

A′ =


2 5 7 9 1
4 8 2 3 −1
−1 0 −4 1 2
0 1 2 3 −46
1 −1 1 2 4

 ,

which has condition number κ(A′) = 32.6028, which is much smaller than κ(A).
We have

A′ =

(
Ak U
V′ M′

)
,

where Ak and U remain unchanged. We need b′ and, hence f′ in

b′ =

(
d
f′

)
,

which is to be determined from (21). Having the Schur complement of Ak in
A′ as

B′ =

(
−1.0806 −47.1774
7.9355 7.2581

)
,

and putting values in (21) we get

f′ = 1.0e+005

(
−0.2956
2.1706

)
.

Putting f′ in (20) we get

x = 1.0e+005


1.2088
−0.6485
−0.2338
0.2735
−0.0000

 .

7. Conclusion

The near-parallelism of the hyperplanes corresponding to two or more equa-
tions of a SLE causes the matrix of this system to have a large condition number
and to be generally ill-conditioned. By removing this parallelism, an equivalent
SLE can be constructed which is well-conditioned. We have derived appropri-
ate formulae and algorithms for this purpose and illustrated them. Although
the computational complexity of our approach, as provided in Section 5.2 shows
that it is only O(n3), it remains, however, to check how practical this approach
is on large scale SLE’s. This work is in progress.
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