• Title/Summary/Keyword: iNOS assay

Search Result 382, Processing Time 0.024 seconds

Inhibitory Effects of Wisaengtang on Inflammatory Mediators in LPS-induced RAW264.7 Cells (위생탕(衛生湯)의 LPS로 유도된 RAW264.7 세포에서 염증매개체에 대한 억제효과)

  • Kim, Jung-Hee;Kim, Tae-Jun;Kim, Ee-Hwa;Kim, Yong-Min
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.32 no.3
    • /
    • pp.48-57
    • /
    • 2019
  • Objectives : This study examined the inhibitory effects of Wisaengtang(WST) on inflammatory mediators($NF-{\kappa}B$, COX-2, iNOS, IL-6) in cellular inflammatory responses induced by lipopolysaccharide(LPS). Methods : To investigate the cytotoxicity of WST, MTT assay was used. The inhibitory effects of inflammatory mediators were confirmed by real-time PCR and DPPH scavenging activity was measured to confirm the antioxidative effect. Results : When the $NF-{\kappa}B$ mRNA expression was inhibited, the levels of COX-2, iNOS, and IL-6 mRNA in the inflammatory response decreased significantly. iNOS is involved in the production of nitric oxide (NO), and it is confirmed that WST inhibits the expression of iNOS mRNA and thus the production of NO. Conclusions : These results suggest that WST can be a therapeutic substance for oxidation and inflammation through elimination of DPPH free radical and inhibition of $NF-{\kappa}B$ activity.

Antioxidant and anti-inflammatory effects and mechanism of Abeliophyllum distichum leaf extract in RAW264.7 macrophages (RAW264.7 대식세포에서 미선나무 잎 추출물의 항산화, 항염증 효능 및 기전연구)

  • Juhee Yoo;Kyung-Ah Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.5
    • /
    • pp.455-468
    • /
    • 2023
  • Purpose: Abeliophyllum distichum (A.distichum) is a plant native to Korea. In this study, we investigated the mechanism of antioxidant and anti-inflammatory effects of the leaf extract of A.distichum. Methods: The antioxidant capacity of the A.distichum leaf extract was determined based on the total polyphenol content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and the ferric reducing antioxidant power (FRAP) assay. The anti-inflammatory effects of the A.distichum leaf extract were evaluated by measuring the production of nitric oxide (NO) and the expression levels of proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 using the enzyme-linked immunosorbent assay (ELISA) and reverse transcription quantitative real-time PCR (RT-qPCR). In addition, the expression of heme oxygenase-1 (HO-1), nuclear transcription factor-erythroid 2 related factor (Nrf2), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2), as well as the activation of nuclear factorkappa B (NF-ĸB) were examined using the western blot analysis. Results: The total polyphenol content of the A.distichum leaf extract was 329.89 ± 30.17 gallic acid equivalents mg/g and the DPPH and ABTS scavenging activities were 55% and 70%, respectively. Additionally, the FRAP value of the extract was 743.68 ± 116.59 mg/mL. After 12-hour treatment with the A.distichum leaf extract, there was a tendency for the Nrf2 expression to increase, and the expression of HO-1 was significantly elevated in the RAW264.7 cells. The A.distichum leaf extract treatment resulted in decreased levels of NO, TNF-α, IL-6, and IL-1β, as well as reduced expression of iNOS and COX-2, along with inhibition of NF-κB activation in lipopolysaccharide-stimulated RAW264.7 cells. Conclusion: These results suggest that the A.distichum leaf extract exerts antioxidative and anti-inflammatory effects by upregulating the expression of HO-1 and downregulating NF-κB activation.

Verification of the Physiological Activity of Geranium thunbergii Extract and Anti-inflammatory Activity in Raw 264.7 Cells (현지초(Geranium thunbergii) 추출물의 생리활성 및 Raw 264.7 cells에서의 항염활성 검증)

  • Seung-Mi Park;Min-Jeong Oh;Jin-Young Lee
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • We evaluated the efficacy of Geranium thunbergii (GT), which has so far been understudied as a cosmetic material, and conducted anti-inflammatory-related activity studies. We measured the electron donation ability and ABTS+ radical scavenging ability to confirm the antioxidant ability of GT and found values of 91% and 94% at a concentration of 50 ㎍/ml, respectively, confirming that GT had excellent antioxidant ability. Tyrosinase inhibitory activity was measured to evaluate whitening activity, and it was found that inhibitory activity was 24.8% at the highest concentration of 1,000 ㎍/ml. Elastase and collagenase inhibitory activity were measured to determine the wrinkle improvement activity of the GT; 30.6% and 90% inhibitory activity were shown at the highest concentration of 1,000 ㎍/ml, respectively. Excellent inhibitory activity was confirmed through the measurement of collagenase inhibitory activity. Before the cell experiments were conducted, the survival rate of the macrophages Raw 264.7 according to GT treatment was determined based on the MTT assay, and the cell survival rate was greater than 83.6% at a concentration of 100 ㎍/ml. Subsequent cell-related experiments were conducted at concentrations of 100 ㎍/ml or less. The NO production inhibitory activity according to the GT treatment by NO assay was measured, and a 74.9% inhibitory rate was confirmed at a concentration of 100 ㎍/ml. Western blotting was performed to determine protein expression inhibition, and both COX-2 and iNOS factors were concentration-dependently inhibited in GT. Based on these results, GT is considered to have potential as an anti-inflammatory functional cosmetic material.

Effect of Nicotinamide on Proliferation, Differentiation, and Energy Metabolism in Bovine Preadipocytes

  • Liu, Xiaomu;Fu, Jinlian;Song, Enliang;Zang, Kun;Wan, Fachun;Wu, Naike;Wang, Aiguo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1320-1327
    • /
    • 2009
  • This study examined the effects of nicotinamide on proliferation, differentiation, and energy metabolism in a primary culture of bovine adipocytes. After treatment of cells with 100-500 $\mu{M}$ nicotinamide, cell growth was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and cellular lipid content was assessed by Oil Red O staining and a triglyceride (TG) assay. Several factors related to energy metabolism, namely adenosine triphosphatase (ATPase) activity, nitric oxide (NO) content, nitric oxide synthase (NOS) activity, the number of mitochondria and the relative expression of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), peroxisome proliferator-activated receptor-$\gamma$ ($PPAR_{\gamma}$) and inducible NOS (iNOS), were also investigated. Results showed that nicotinamide induced both proliferation and differentiation in bovine preadipocytes. Nicotinamide decreased NO production by inhibiting NOS activity and iNOS mRNA expression, and controlled lipolytic activity by increasing ATPase activity and the number of mitochondria. The present study provides further evidence of the effects of nicotinamide on lipid and energy metabolism, and suggests that nicotinamide may play an important role in the development of bovine adipose tissue in vivo. This emphasizes the importance of investigating bovine adipose tissue to improve our understanding of dairy cow physiology.

Anti-oxidant, Anti-inflammation and Anti-microbial Effects of Hoangtonogak Plus Extracts (황토노각플러스 추출물의 항산화, 항염 및 항미생물 효능)

  • Cho, Jun-Hee;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.183-190
    • /
    • 2020
  • This study evaluated the possibility of Hoangtonogak Plus extracts as a bioactive ingredients for cosmetic products. Methanol(MN) and hot-water(WN) extracts were analysed by DPPH/ABTS radical scavenging activity, FRAP value for anti-oxidant activity, MTT assay for cell viability, inhibition of NO production and iNOS protein expression for anti-inflammatory effect, paper disc diffusion method for anti-microbial activity against Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli.. The contents of total polyphenol of MN and WN extracts were 2.92±0.01 mgGAE/g and 1.67±0.02 mgGAE/g, respectively. DPPH, ABTS and FRAP values of MN extracts were higher than WN at each concentration. No significant cytotoxicity was observed in RAW264.7 cells. Furthermore, NO production of MN and WN at 1 mg/mL concentration was measured as 11.69 μM, 20.4 μM, respectively. In addition, MN extracts showed anti-microbial effect only on S. epidermidis. Also MN extracts suppressed iNOS protein level in a concentration-dependent manner. According to our results, the MN extracts demonstrated its potential as a natural source of antioxidant with anti-microbial and anti-inflammatory properties.

Suppressive Effects on Lipid Accumulation and Expression of Interleukin-1β-Mediated Inducible Nitric Oxide Synthase in 3T3-L1 Preadipocytes by a Standardized Commercial Noni Fruit Juice (Noni Fruit Juice의 3T3-L1 지방전구세포 분화 억제 및 인터루킨-1β 유도 Inducible Nitric Oxide Synthase 염증유전자 발현 감소 효과)

  • Byeong-Churl Jang
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Objectives: Noni fruit juice (NFJ) is liquor extracted from Morinda citrifolia (noni) fruit and has been used as an herbal remedy in many countries. However, the NFJ's anti-adipogenic and anti-inflammatory effects on adipocytes are poorly understood. The purpose of this study was to explore the commercially standardized NFJ effects on lipid accumulation throughout 3T3-L1 preadipocytes differentiation and interleukin-1β (IL-1β)-mediated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 preadipocytes. Methods: Cellular lipid accumulation and triglyceride (TG) content in differentiating 3T3-L1 preadipocytes were assessed subsequently via the Oil Red O staining and AdipoRed assay. MTS assay was used to examine NFJ cytotoxicity in (differentiating) 3T3-L1 preadipocytes. Immunoblotting and reverse transcriptase polymerase chain reaction analysis were used to measure the expression levels of target protein and mRNA in (differentiating) 3T3-L1 preadipocytes, respectively. Results: NFJ treatment at 150 μL/mL led to a substantial reduction of fat accumulation and TG content during 3T3-L1 adipogenesis with no discernable impact on the cell viability. Of note, while NFJ treatment (150 μL/mL) largely inhibited the CCAAT/enhancer-binding protein-α (C/EBP-α) and peroxisome proliferator-activated receptor-β (PPAR-β) protein expressions, it did not influence PPAR-γ in differentiating 3T3-L1 preadipocytes. Of interest, treatment with IL-1β at 20 ng/mL for 4 hours elicited in firm induction of iNOS mRNA expression in 3T3-L1 preadipocytes. However, NFJ treatment at 100 or 200 μL/mL greatly attenuated the IL-1β-induced iNOS mRNA expression in 3T3-L1 preadipocytes. Conclusions: NFJ has anti-adipogenic and anti-inflammatory effects on (differentiating) 3T3-L1 preadipocytes which are in part intervened via control of the expression of C/EBP-α, PPAR-β, and iNOS.

Anti-inflammatory and Immune Regulatory Effects of Aucklandia lappa Decne 70% Ethanol Extract (운목향 70% 에탄올 추출물의 항염증 및 면역조절에 대한 효과)

  • Kim, Min Sun;Kim, Nam Seok;Kwon, Jin;Kim, Ha Rim;Lee, Da Young;Oh, Mi Jin;Kim, Hong Jun;Lee, Chang Hyun;Oh, Chan Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.1
    • /
    • pp.8-18
    • /
    • 2018
  • Background: This present study was conducted to evaluate the anti-inflammatory and immune regulatory effects of Aucklandia lappa Decne (AL). Methods and Results: We measured cytotoxicity, nitric oxide (NO) content, mRNA expression (iNOS, IL-1${\alpha}$, IL-$1{\beta}$, and TNF-${\alpha}$), protein expression (iNOS, COX-2, and $I{\kappa}B$) and phagocytic activity in RAW264.7 cells. Male BALB/c mice were fed 100 mg/kg AL (Aucklandia lappa Decneon 70% ethanol extract) and 250 mg/kg AL for 4 weeks; thereafter, we observed B/T or $CD4^+/CD8^+$ lymphocyte subpopulation change, and expression patterns of $CD4^+$ and $CD8^+$ lymphocytes by immunohistochemical staining in mouse splenocytes and/or thymocytes. To determine the experimental concentration of AL, cell viability was measured by MTT assay and tested at $12.5{\mu}g/m{\ell}$ or less. AL inhibited the levels of NO, lymphokine production (IL-$1{\beta}$, and TNF-${\alpha}$), and mRNA (iNOS, IL-1${\alpha}$, IL-$1{\beta}$, and TNF-${\alpha}$) and protein (iNOS, and COX-2) expression. Additionally, the levels of $I{\kappa}B$, phagocytic activity, and splenic and thymic T lymphocytes, especially $T_H$ and $T_C$ cells were significantly increased in AL administered mice. The immuno-reactive density of $CD4^+$ and $CD8^+$ lymphocytes was stronger in AL groups than in the normal group. AL stimulated NO, iNOS, and COX-2, and regulated IL-1${\alpha}$, IL-$1{\beta}$, TNF-${\alpha}$, and $I{\kappa}B$ in macrophages treated with LPS (lipopolysaccharide). In addition, AL increased the phagocytic activity of macrophages and the immunity of mouse T ($T_H$, and $T_C$) cells. Conclusions: These results suggested that AL might show anti-inflammatory activity via the suppression of various inflammatory markers and immuno-regulatory activity.

Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW 264.7 cells (RAW 264.7 세포에서 왕지네 추출물의 항염 활성)

  • Park, Jae Hyeon;Lee, Sun Ryung
    • Journal of Nutrition and Health
    • /
    • v.51 no.4
    • /
    • pp.323-329
    • /
    • 2018
  • Purpose: The dried body of Scolopendra subspinipes mutilans has long been used as a traditional Korean medicinal food, but little is known about its mechanisms of action. In this study, we investigated the anti-inflammatory activities of Scolopendra subspinipes mutilans and possible mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Cytotoxicity of Scolopendra subspinipes mutilans extract (SSME) was measured by MTT assay, anti-inflammatory activities were analyzed by nitric oxide (NO) production, the expression of inducible NO synthase (iNOS) and the mRNA level of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$) and interleukin-6 (IL-6). Nuclear translocation of nuclear factor-kappa B ($NF-{\kappa}B$) p65 subunit and degradation of inhibitory kappa B ($I{\kappa}B$) were examined by western blot. Results: SSME inhibited LPS-induced NO production and iNOS expression without cytotoxicity. Up-regulation of LPS-induced pro-inflammatory cytokines, $IL-1{\beta}$ and IL-6 was dose dependently attenuated by SSME. Exposure of pyrrolidine dithiocarbamate, an $NF-{\kappa}B$ specific inhibitor, accelerated the inhibitory effects of SSME on NO production and iNOS expression in LPS-stimulated cells. Moreover, translocation of $NF-{\kappa}B$ from the cytosol to the nucleus and degradation of $I{\kappa}B$ were decreased by treatment with SSME in LPS-induced cells. Conclusion: These results suggest that the SSME might have the inhibitory effects on inflammation, partly through inhibition of the $NF-{\kappa}B$ signaling pathway.

Inhibitory effect of Yongdamsagantang water extract on IL-6 and nitric oxide production in lipopolysaccharide-activated RAW 264.7 cells

  • Lim, Jin-Ho;Lee, Jong-Rok;Kim, Sang-Chan;Jee, Seon-Young
    • Advances in Traditional Medicine
    • /
    • v.7 no.3
    • /
    • pp.321-329
    • /
    • 2007
  • The present study was conducted to evaluate the effect of Yongdamsagantang (YST) on the regulatory mechanism of cytokines and nitric oxide (NO) for the immunological activities in RAW 264.7 cells. After the treatment of YST water extract, cell viability was measured by MTT assay, and NO production was monitored by measuring the nitrite content in culture medium. Inducible nitric oxide synthase (iNOS) and phospholylation of inhibitor of nuclear factor kappa B alpha ($p-I{\kappa}B{\alpha}$) were determined by Immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results provided evidences that YST inhibited the production of NO. iNOS, and interleukin-6, and the activation of $p-I{\kappa}B{\alpha}$ in RAW 264.7 cells activated with lipopolysaccharide. These findings showed that YST could have some anti-inflammatory effects which might play a role in therapy in Gram-negative bacterial infections.

Anti-oxidative and Anti-inflammatory Effects of Protulaca Oleracea on the LPS-stimulated AGS Cells

  • Kim, Chae-Hyun;Park, Pyeong-Beom;Choe, Seung-Ryeol;Kim, Tae-Heon;Jeong, Jong-Kil;Lee, Kwang-Gyu;Lee, Chang-Hyun;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.488-493
    • /
    • 2009
  • Protulaca oleracea, a widely distributed weed, has been reported to exhibit different health promoting effects. The objective of this study was to evaluate the anti-oxidative and anti-inflammatory effects of P. oleracea on LPS-stimulated AGS cells. The cytotoxicity of P. oleracea in AGS cells was examined by MTT assay. The anti-oxidative effects of P. oleracea were examined by DPPH assay. RT-PCR was carried out to examine the effect of P. oleracea in the mRNA expression of different inflammatory mediators. MTT assay revealed that P. oleracea have almost no cytotoxity in AGS cells. DPPH radical scavenging activities were better than butylated hydroxyl toluene (BHT). The mRNA expression of different endogenous anti-oxidative enzymes (SOD2, GPx3 and catalase) were preserved by P. oleracea in AGS cells. The nitric oxide production and expression of iNOS in LPS stimulated RAW264.7 were suppressed in P. oleracea treated groups. Based on these findings, P. oleracea has protective anti-oxidant and anti-inflammatory effects.