Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2020.10.12.183

Anti-oxidant, Anti-inflammation and Anti-microbial Effects of Hoangtonogak Plus Extracts  

Cho, Jun-Hee (Dept. of Beauty Art, Graduate School, Seokyeong University)
Lee, Ji-An (Dept. of Beauty Art, Graduate School, Seokyeong University)
Publication Information
Journal of Convergence for Information Technology / v.10, no.12, 2020 , pp. 183-190 More about this Journal
Abstract
This study evaluated the possibility of Hoangtonogak Plus extracts as a bioactive ingredients for cosmetic products. Methanol(MN) and hot-water(WN) extracts were analysed by DPPH/ABTS radical scavenging activity, FRAP value for anti-oxidant activity, MTT assay for cell viability, inhibition of NO production and iNOS protein expression for anti-inflammatory effect, paper disc diffusion method for anti-microbial activity against Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli.. The contents of total polyphenol of MN and WN extracts were 2.92±0.01 mgGAE/g and 1.67±0.02 mgGAE/g, respectively. DPPH, ABTS and FRAP values of MN extracts were higher than WN at each concentration. No significant cytotoxicity was observed in RAW264.7 cells. Furthermore, NO production of MN and WN at 1 mg/mL concentration was measured as 11.69 μM, 20.4 μM, respectively. In addition, MN extracts showed anti-microbial effect only on S. epidermidis. Also MN extracts suppressed iNOS protein level in a concentration-dependent manner. According to our results, the MN extracts demonstrated its potential as a natural source of antioxidant with anti-microbial and anti-inflammatory properties.
Keywords
Hoangtonogak Plus; Antioxidant; Anti-inflammation; Anti-microbial; Cosmetic ingredient;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 U. M-M Agatemor, O. F. C. Nwodo & C. A. Anosike. (2015). Anti-inflammatory activity of Cucumis sativus L. British Journal of Pharmaceutical Research, 8(2), 1-8. DOI : 10.5352/JLS.2008.18.4.467
2 S. H. Chumg & S. H. Moon. (2001). Antimutagenic and antimicrobial effect of cucumber (Cucumis sativus) extracts. Journal of the Korean Society of Food Science and Nutrition, 30(6), 1164-1170.
3 J. H. Kim, J. J. Kim, H. K. Oh, M. J. Chang & S. H. Kim. (2007). Seasonal variation of mineral nutrients in korean common fruits and vegetables. Journal of the East Asian Society of Dietary Life, 17(6), 860-875
4 S. W. Par, J. W. Lee, Y. C. Kim, K. Y. Kim, J. H. Hong, M. R. Lee & S. J. Hong. (2004). Relationship between physicochemical quality attributes and sensory evaluation during fruit maturation of cucumber. Korean Journal of Horticultural Science & Technology, 22(2), 177-182.
5 S. A. Kim, S. S. Chun & J. H. Lee. (2015). Physicochemical analyses and korean consumers' acceptability of environment-friendly and conventionally grown cucumber. The Korean Journal of Food and Nutrition, 28(6), 1071-1081. DOI : 10.9799/ksfan.2015.28.6.1071   DOI
6 S. Y. Yang, H. G. Kim, S. J. Lee, W. M. Cha, C. H. Ahn & H. O. Boo. (2013). Comparison of the antioxidative abilities of greenhouse-grown cucumber according to cultivars and growth stages. Korean Journal of Plant Resources, 26(5), 548-556. DOI : 10.7732/kjpr.2013.26.5.548   DOI
7 H. Kim & H. Chung. (2017). Comparison of nutrient content and retention rate among bhaichung cucumber, white dadagi cucumber, and yellowish overripe cucumber according to different cooking methods. Journal of the Korean Society of Food Science and Nutrition, 46(11), 1350-1357. DOI : 10.3746/jkfn.2017.46.11.1350   DOI
8 M. S. Blois. (1958, April). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200.   DOI
9 N. Fellegrini, R. Ke, M. Yang & C. R. Evans. (1999). Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-azinobis(3-enthylenebenzothiazoline-6-sulfo nic acid) radical cation decolorization assay. Methods in Enzymology, 299, 379-389. DOI : 10.1016/S0076-6879(99)99037-7   DOI
10 I. F. Benzie & J. J. Strain. (1996). The ferric reducing ability of plasma(FRAP) as measurement of "antioxidant power" The FRAP assay. Analytical Biochemistry, 239, 70-6. DOI : 10.1006/abio.1996.0292   DOI
11 AOAC. (1980). Official Methods of Analysis. 13 th ed., Association of Official Analytical Chemists. (pp. 376-384). Washington D.C, USA.
12 A. Murakami, M. Nakashima, T. Koshiba, T. Maoka, H. Nishino, M. Yano, T. Sumida, O. K. Kim, K. Koshimizu & J. Ohigashi. (2000). Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Letters, 149, 115-123. DOI : 10.1016/s0304-3835(99)00351-1   DOI
13 Y. Wang, E. S. Kim & J. A. Lee. (2018). The study of antioxidant and anti-inflammatory effects of notoginseng root(NGR) hot water extracts. Journal of the Korean Society of Cosmetology, 24(5), 1014-1020.
14 E. A. Shalaby & S. M. M. Shanab. (2013). Comparison of DPPH and ABTS assays of determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian Journal of Geo-Marine Sciences, 42(5), 556-564.
15 J. Tang, X. Meng, H. Liu, J. Zhao, L. Zhou, M. Qiu, X. Zhang, Z. Yu & F. Yang. (2010). Antimicrobial activity of sphingolipids isolated from the stems of cucumber (Cucumis sativus L.). Molecules, 15, 9288-9297. DOI : 10.3390/molecules15129288   DOI
16 C. Kaur & H. C. Kapoor. (2002). Anti-oxidant activity and total phenolic content of some asian vegetables. International Journal of Food Science and Technology, 37, 153-161. DOI : 10.1046/j.1365-2621.2002.00552.x   DOI
17 P. Shah & H. A. Modi. (2015). Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 3(VI), 636-641.
18 I. M. Abu-Reidah, d. Arraez-Roman, R. Quirantes-Pine, S. Fernandez-Arroyo, a. Segura-Carretero & A. Fernandez-Guiterrez. (2012). HPLC-ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Research International, 46(1), 108-117. DOI : 10.1016/j.foodres.2011.11.026   DOI
19 Y. Gao, M. S. Islam, J. Tian, V. w Y. Lui & D. Xiao. (2014). Inactivation of ATP citrate lyase by cucurbitacin B: A bioactive compound from cucumber, inhibits prostate cancer growth. Cancer Letters, 349(1), 15-25. DOI : 10.1016/j.canlet.2014.03.015   DOI
20 J. W. Kim, E. S. Park & S. Yoon, (1985). Characteristics of ascorbic acid oxidase in cucumbers. The Korean Journal of Nutrition, 18(4), 312-317.
21 D. Kumar, S. Kumar, J. Singh, Narender, Rashmi, B. D. Vashistha, N. Singh. (2010). Free radical scavenging and analgesic activities of Cucumis sativus L. fruit extract. Journal of Young Pharmacists, 2(4), 365-368. DOI : 10.4103/0975-1483.71627   DOI
22 H. Kai, J. Baba & T. Okuyama. (2008). Inhibitory effect of cucumis sativus on melanin production in melanoma B16 cells by downregulation of tyrosinase expression. Planta Medica, 74, 1785-1788. DOI : 10.1055/s-0028-1088338   DOI
23 N. K. Nema, N. Maity & B. Sarkar. (2011). Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Archives Dermatological Research. 303, 277-252. DOI : 10.1007/s00403-010-1103-y   DOI
24 N. S. gill, M. Garg, R. Bansal, S. Sood, a. Muthuraman, M. Bali and P. D. Sharma. (2009). Evaluation of antioxidant and antiulcer potential of Cucumis sativum L. seed extract in rats. Asian Journal of Clinical Nutrition, 1(3), 131-138. DOI: 10.3923/ajcn.2009.131.138   DOI
25 N. muruganantham, S. Solomon & M. M. senthamilselvi. (2016). Anti-oxidant and anti-inflammatory activity of Cucumis sativus(cucumber) flowers. International Journal of Pharmaceutical Sciences and Research, 7(4), 1740-1745. DOI: 10.13040/IJPSR.0975-8232.7(4).1740-45   DOI