DOI QR코드

DOI QR Code

Anti-oxidant, Anti-inflammation and Anti-microbial Effects of Hoangtonogak Plus Extracts

황토노각플러스 추출물의 항산화, 항염 및 항미생물 효능

  • Cho, Jun-Hee (Dept. of Beauty Art, Graduate School, Seokyeong University) ;
  • Lee, Ji-An (Dept. of Beauty Art, Graduate School, Seokyeong University)
  • 조준희 (서경대학교 일반대학원 미용예술학과) ;
  • 이지안 (서경대학교 일반대학원 미용예술학과)
  • Received : 2020.11.16
  • Accepted : 2020.12.20
  • Published : 2020.12.28

Abstract

This study evaluated the possibility of Hoangtonogak Plus extracts as a bioactive ingredients for cosmetic products. Methanol(MN) and hot-water(WN) extracts were analysed by DPPH/ABTS radical scavenging activity, FRAP value for anti-oxidant activity, MTT assay for cell viability, inhibition of NO production and iNOS protein expression for anti-inflammatory effect, paper disc diffusion method for anti-microbial activity against Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli.. The contents of total polyphenol of MN and WN extracts were 2.92±0.01 mgGAE/g and 1.67±0.02 mgGAE/g, respectively. DPPH, ABTS and FRAP values of MN extracts were higher than WN at each concentration. No significant cytotoxicity was observed in RAW264.7 cells. Furthermore, NO production of MN and WN at 1 mg/mL concentration was measured as 11.69 μM, 20.4 μM, respectively. In addition, MN extracts showed anti-microbial effect only on S. epidermidis. Also MN extracts suppressed iNOS protein level in a concentration-dependent manner. According to our results, the MN extracts demonstrated its potential as a natural source of antioxidant with anti-microbial and anti-inflammatory properties.

본 연구에서는 황토노각플러스 추출물의 생리활성 평가를 통해 화장품 원료로서의 가능성을 조사하였다. 황토노각 플러스 추출물에 대한 항산화 효과는 DPPH/ABTS 라디컬 소거능 활성 및 FRAP 분석, 세포 생존율은 MTT assay, 항염증 효과는 nitric oxide(NO) 생성억제 및 iNOS 단백질 발현 수준, 항균 효과는 총 3종 균주 Staphylococcus aureus, Staphylococcus epidermidis 및 Escherichia coli에 대한 한천 확산법을 측정하였다. 메탄올추출물(MN)과 열수추출물(WN)의 총폴리페놀 함량은 각각 2.92±0.01 mgGAE/g, 1.67±0.02 mgGAE/g로 나타났다. MN 추출물의 DPPH, ABTS 및 FRAP 값은 모든 농도에서 WN 추출물보다 높게 나타났다. RAW264.7 세포에 대한 두 추출물의 세포 독성은 관찰되지 않았다. 더욱이 1 mg/mL농도에서 MN과 WN 추출물의 NO 생성량은 11.69 μM과 20.4 μM로 측정되었으며, MN 추출물의 iNOS 단백질 발현 수준은 추출물 농도 의존적으로 억제되었다. 또한 MN 추출물은 S. epidermidis 균주에서만 항균효능을 보였다. 이러한 결과들로 황토노각플러스 추출물은 항산화, 항염, 항균효능을 지닌 천연물질 후보로써 가능성이 높다고 판단된다.

Keywords

References

  1. Y. Gao, M. S. Islam, J. Tian, V. w Y. Lui & D. Xiao. (2014). Inactivation of ATP citrate lyase by cucurbitacin B: A bioactive compound from cucumber, inhibits prostate cancer growth. Cancer Letters, 349(1), 15-25. DOI : 10.1016/j.canlet.2014.03.015
  2. J. W. Kim, E. S. Park & S. Yoon, (1985). Characteristics of ascorbic acid oxidase in cucumbers. The Korean Journal of Nutrition, 18(4), 312-317.
  3. J. Tang, X. Meng, H. Liu, J. Zhao, L. Zhou, M. Qiu, X. Zhang, Z. Yu & F. Yang. (2010). Antimicrobial activity of sphingolipids isolated from the stems of cucumber (Cucumis sativus L.). Molecules, 15, 9288-9297. DOI : 10.3390/molecules15129288
  4. D. Kumar, S. Kumar, J. Singh, Narender, Rashmi, B. D. Vashistha, N. Singh. (2010). Free radical scavenging and analgesic activities of Cucumis sativus L. fruit extract. Journal of Young Pharmacists, 2(4), 365-368. DOI : 10.4103/0975-1483.71627
  5. H. Kai, J. Baba & T. Okuyama. (2008). Inhibitory effect of cucumis sativus on melanin production in melanoma B16 cells by downregulation of tyrosinase expression. Planta Medica, 74, 1785-1788. DOI : 10.1055/s-0028-1088338
  6. N. K. Nema, N. Maity & B. Sarkar. (2011). Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Archives Dermatological Research. 303, 277-252. DOI : 10.1007/s00403-010-1103-y
  7. N. S. gill, M. Garg, R. Bansal, S. Sood, a. Muthuraman, M. Bali and P. D. Sharma. (2009). Evaluation of antioxidant and antiulcer potential of Cucumis sativum L. seed extract in rats. Asian Journal of Clinical Nutrition, 1(3), 131-138. DOI: 10.3923/ajcn.2009.131.138
  8. N. muruganantham, S. Solomon & M. M. senthamilselvi. (2016). Anti-oxidant and anti-inflammatory activity of Cucumis sativus(cucumber) flowers. International Journal of Pharmaceutical Sciences and Research, 7(4), 1740-1745. DOI: 10.13040/IJPSR.0975-8232.7(4).1740-45
  9. J. H. Kim, J. J. Kim, H. K. Oh, M. J. Chang & S. H. Kim. (2007). Seasonal variation of mineral nutrients in korean common fruits and vegetables. Journal of the East Asian Society of Dietary Life, 17(6), 860-875
  10. S. W. Par, J. W. Lee, Y. C. Kim, K. Y. Kim, J. H. Hong, M. R. Lee & S. J. Hong. (2004). Relationship between physicochemical quality attributes and sensory evaluation during fruit maturation of cucumber. Korean Journal of Horticultural Science & Technology, 22(2), 177-182.
  11. S. A. Kim, S. S. Chun & J. H. Lee. (2015). Physicochemical analyses and korean consumers' acceptability of environment-friendly and conventionally grown cucumber. The Korean Journal of Food and Nutrition, 28(6), 1071-1081. DOI : 10.9799/ksfan.2015.28.6.1071
  12. S. Y. Yang, H. G. Kim, S. J. Lee, W. M. Cha, C. H. Ahn & H. O. Boo. (2013). Comparison of the antioxidative abilities of greenhouse-grown cucumber according to cultivars and growth stages. Korean Journal of Plant Resources, 26(5), 548-556. DOI : 10.7732/kjpr.2013.26.5.548
  13. H. Kim & H. Chung. (2017). Comparison of nutrient content and retention rate among bhaichung cucumber, white dadagi cucumber, and yellowish overripe cucumber according to different cooking methods. Journal of the Korean Society of Food Science and Nutrition, 46(11), 1350-1357. DOI : 10.3746/jkfn.2017.46.11.1350
  14. M. S. Blois. (1958, April). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  15. N. Fellegrini, R. Ke, M. Yang & C. R. Evans. (1999). Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-azinobis(3-enthylenebenzothiazoline-6-sulfo nic acid) radical cation decolorization assay. Methods in Enzymology, 299, 379-389. DOI : 10.1016/S0076-6879(99)99037-7
  16. I. F. Benzie & J. J. Strain. (1996). The ferric reducing ability of plasma(FRAP) as measurement of "antioxidant power" The FRAP assay. Analytical Biochemistry, 239, 70-6. DOI : 10.1006/abio.1996.0292
  17. AOAC. (1980). Official Methods of Analysis. 13 th ed., Association of Official Analytical Chemists. (pp. 376-384). Washington D.C, USA.
  18. A. Murakami, M. Nakashima, T. Koshiba, T. Maoka, H. Nishino, M. Yano, T. Sumida, O. K. Kim, K. Koshimizu & J. Ohigashi. (2000). Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Letters, 149, 115-123. DOI : 10.1016/s0304-3835(99)00351-1
  19. Y. Wang, E. S. Kim & J. A. Lee. (2018). The study of antioxidant and anti-inflammatory effects of notoginseng root(NGR) hot water extracts. Journal of the Korean Society of Cosmetology, 24(5), 1014-1020.
  20. E. A. Shalaby & S. M. M. Shanab. (2013). Comparison of DPPH and ABTS assays of determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian Journal of Geo-Marine Sciences, 42(5), 556-564.
  21. C. Kaur & H. C. Kapoor. (2002). Anti-oxidant activity and total phenolic content of some asian vegetables. International Journal of Food Science and Technology, 37, 153-161. DOI : 10.1046/j.1365-2621.2002.00552.x
  22. P. Shah & H. A. Modi. (2015). Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 3(VI), 636-641.
  23. I. M. Abu-Reidah, d. Arraez-Roman, R. Quirantes-Pine, S. Fernandez-Arroyo, a. Segura-Carretero & A. Fernandez-Guiterrez. (2012). HPLC-ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Research International, 46(1), 108-117. DOI : 10.1016/j.foodres.2011.11.026
  24. U. M-M Agatemor, O. F. C. Nwodo & C. A. Anosike. (2015). Anti-inflammatory activity of Cucumis sativus L. British Journal of Pharmaceutical Research, 8(2), 1-8. DOI : 10.5352/JLS.2008.18.4.467
  25. S. H. Chumg & S. H. Moon. (2001). Antimutagenic and antimicrobial effect of cucumber (Cucumis sativus) extracts. Journal of the Korean Society of Food Science and Nutrition, 30(6), 1164-1170.