• 제목/요약/키워드: hyperelastic analysis

검색결과 68건 처리시간 0.02초

Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model

  • Afshari, Behzad Mohasel;Mirjavadi, Seyed Sajad;Barati, Mohammad Reza
    • Advances in concrete construction
    • /
    • 제13권5호
    • /
    • pp.377-384
    • /
    • 2022
  • The present paper deals with nonlinear deflection analysis of hyperelastic plates rested on elastic foundation and subject to a transverse point force. For modeling of hyperelastic material, three-parameter Ishihara model has been employed. The plate formulation is based on classic plate theory accounting for von-Karman geometric nonlinearity. Therefore, both material and geometric nonlinearities have been considered based on Ishihara hyperelastic plate model. The governing equations for the plate have been derived based on Hamilton's rule and then solved via Galerkin's method. Obtained results show that material parameters of hyperelastic material play an important role in defection analysis. Also, the effects of foundation parameter and load location on plate deflections will be discussed.

초탄성 및 점탄성 물성을 고려한 자동차용 휠 베어링 실의 드래그 토크 예측 (Drag Torque Prediction for Automotive Wheel Bearing Seals Considering Viscoelastic as Well as Hyperelastic Material Properties)

  • 이승표
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.267-273
    • /
    • 2019
  • Wheel bearings are important automotive parts that bear the vehicle weight and translate rotation motion; in addition, their seals are components that prevent grease leakage and foreign material from entering from the outside of the bearings. Recently, as the need for electric vehicles and eco-friendly vehicles has been emerging, the reduction in fuel consumption and $CO_2$ emissions are becoming the most important issues for automobile manufacturers. In the case of wheel bearings, seals are a key part of drag torque. In this study, we investigate the prediction of the drag torque taking into consideration the hyperelastic and viscoelastic material properties of automotive wheel bearing seals. Numerical analysis based on the finite element method is conducted for the deformation analyses of the seals. To improve the reliability of the rubber seal analysis, three types of rubber material properties are considered, and analysis is conducted using the hyperelastic material properties. Viscoelastic material property tests are also conducted. Deformation analysis considering the hyperelastic and viscoelastic material properties is performed, and the effects of the viscoelastic material properties are compared with the results obtained by the consideration of the hyperelastic material properties. As a result of these analyses, the drag torque is 0.29 Nm when the hyperelastic characteristics are taken into account, and the drag torque is 0.27 Nm when both the hyperelastic and viscoelastic characteristics are taken into account. Therefore, it is determined that the analysis considering both hyperelastic and viscoelastic characteristics must be performed because of its reliability in predicting the drag torque of the rubber seals.

고무하우징을 갖는 장력센서의 변형거동 해석 (Stress Analysis of a Tension Sensor with a Rubber Housing for a Fence Intrusion Detection System)

  • 이형욱;장광걸;허훈;강대임
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.698-703
    • /
    • 2001
  • This paper is concerned with the nonlinear hyperelastic problem fur the incompressible characteristics of the rubber. Tension sensor is a strain gage type load cell element for a fence intrusion detection system and consists of the sensing part and the rubber housing. The analysis includes an elastic analysis and a hyperelastic analysis of a tension sensor for the deformed shape and variation of the maximum strain on the sensing part with respect to the vertical load. Numerical results show that the hyperelastic model is stiffer and less deformed than the elastic model. Comparing with the experimental test data, we know the hyperelastic model is the better approximation than the elastic model.

  • PDF

Theoretical analysis of rotary hyperelastic variable thickness disk made of functionally graded materials

  • Soleimani, Ahmad;Adeli, Mohsen Mahdavi;Zamani, Farshad;Gorgani, Hamid Haghshenas
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.39-49
    • /
    • 2022
  • This research investigates a rotary disk with variable cross-section and incompressible hyperelastic material with functionally graded properties in large hyperelastic deformations. For this purpose, a power relation has been used to express the changes in cross-section and properties of hyperelastic material. So that (m) represents the changes in cross-section and (n) represents the manner of changes in material properties. The constants used for hyperelastic material have been obtained from experimental data. The obtained equations have been solved for different m, n, and (angular velocity) values, and the values of radial stresses, tangential stresses, and elongation have been compared. The results show that m and n have a significant impact on disk behavior, so the expected behavior of the disk can be obtained by an optimal selection of these two parameters.

FCEV용 고압 밸브 실링부의 고무재질에 따른 기밀해석 (Sealing analysis of sealing rings with respect to rubber material properties for high pressure valve of FCEV)

  • 박근영;양갑진;노의동;박준수;전문수;이형욱
    • 융복합기술연구소 논문집
    • /
    • 제7권2호
    • /
    • pp.13-16
    • /
    • 2017
  • The design of sealing mechanisms of a manual pressure valve was analyzed with FE analysis for a hydrogen fuels charge and discharge system of FCEV. The damage prediction of the O-ring with respect to the material models of rubbers was calculated by the gap analysis of the backup ring and O-ring according to the internal pressure. Two kinds of the rubber material characteristic models were adopted to the O-ring. One was the linear elastic and the other was hyperelastic of Ogden $3^{rd}$ order model. The experimental data of urethane of Shore hardness 90 was utilized to the curve fitting of hyperelastic properties. It was found that the contact pattern of the backup ring was different in two models and the sealing mechanism was better in the case of the hyperelastic characteristic model.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

수치미분을 이용한 고무의 유한요소 해석시 수렴성 연구 (A Study on the Convergency of the Finite Element Analysis of Rubber Using Numerical Differentiation Mehthod)

  • 권영두;노권택;이창섭;홍상표
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.141-153
    • /
    • 1999
  • A finite element procedure for the analysis of rubber-like hyperelastic material is developed. The volumetric incompressiblity conditions of the rubber deformation is included in the formulation by using penalty method. In this paper, the behavior of the rubber deformation is represented by hyperelastic constitutive relations based on a generalized Mooney-Rivlin model. The principle of virtual work is used to derive nonlinear finite element equation for the large displacement problem and presented in total-Lagrangian description. The finite element procedure using analytic differentiation resulted in very close solution to the result of the well known commercial packages NISAII AND ABAQUS. Numerical tests show that the results from the numerical differentiation method coincide very well with those from the analytic method and the well known commercial packages in static analysis. The convergency of rubber usingν iteration method is also discussed.

  • PDF

치주인대의 비선형 거동을 고려한 하악 견치의 유한요소해석 (Finite Element Analysis of the Mandibular Canine for Nonlinear Deformation of the Periodontal Ligament)

  • 양훈철;김기태;하만희;손우성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.550-557
    • /
    • 2003
  • Hyperelastic constitutive equations for nonlinear deformation of the periodontal ligament were investigated. The parameters in the strain energy potentials were obtained from experimental data for uniaxial and shear responses of the human periodontal ligament. The hyperelastic constitutive equations based on two strain energy potentials was also compared with the linear elastic equation, which is recently reported. The best fitted parameters in the strain energy potentials was applied to finite element program (ABAQUS) to simulate special orthodontic treatment of a mandibular canine.

  • PDF

압입시험을 통하여 초탄성 재료 물성치를 평가하는 단순한 방법 (A Simple Method for the Estimation of Hyperelastic Material Properties by Indentation Tests)

  • 송재욱;김민석;정구훈;김현규
    • 한국전산구조공학회논문집
    • /
    • 제32권5호
    • /
    • pp.273-278
    • /
    • 2019
  • 본 논문에서는 압입시험을 통해서 초탄성 재료 물성치를 평가하는 간단한 방법을 제시하였다. 초탄성 재료 모델 중, 3개의 물성치($C_{10}$, $C_{20}$, $C_{30}$)를 가지는 Yeoh 모델을 선택하여 주연신률로 표현되는 변형률 에너지 밀도를 적용하였다. Yeoh 물성치를 변화시키며, 구형 압입시험 유한요소해석을 수행하여 압입자 반력-변위 곡선을 획득하였다. 압입자 반력-변위 곡선을 3차 다항식으로 근사하였고, 이 다항식을 물성치($C_{10}$, $C_{20}$, $C_{30}$)의 3차 곱으로 근사된 3차 다항식으로 표현하였다. 압입자 반력-변위곡선 근사를 위해 회귀분석을 진행하여 수식들의 계수를 결정하였으며, 이 회귀식을 이용하여 초탄성 재료의 물성치를 평가하였다. 초탄성 재료 물성치 평가를 수행하고 오차를 비교하여 유효성을 보여 주었다.

Development of Hyperelastic Model for Butadiene Rubber Using a Neural Network

  • Pham, Truong Thang;Woo, Changsu;Choi, Sanghyun;Min, Juwon;Kim, Beomkeun
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.79-84
    • /
    • 2021
  • A strain energy density function is used to characterize the hyperelasticity of rubber-like materials. Conventional models, such as the Neo-Hookean, Mooney-Rivlin, and Ogden models, are widely used in automotive industries, in which the strain potential is derived from strain invariants or principal stretch ratios. A fitting procedure for experimental data is required to determine material constants for each model. However, due to the complexities of the mathematical expression, these models can only produce an accurate curve fitting in a specified strain range of the material. In this study, a hyperelastic model for Neodymium Butadiene rubber is developed by using the Artificial Neural Network. Comparing the analytical results to those obtained by conventional models revealed that the proposed model shows better agreement for both uniaxial and equibiaxial test data of the rubber.