DOI QR코드

DOI QR Code

Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model

  • Received : 2021.09.25
  • Accepted : 2022.05.04
  • Published : 2022.05.25

Abstract

The present paper deals with nonlinear deflection analysis of hyperelastic plates rested on elastic foundation and subject to a transverse point force. For modeling of hyperelastic material, three-parameter Ishihara model has been employed. The plate formulation is based on classic plate theory accounting for von-Karman geometric nonlinearity. Therefore, both material and geometric nonlinearities have been considered based on Ishihara hyperelastic plate model. The governing equations for the plate have been derived based on Hamilton's rule and then solved via Galerkin's method. Obtained results show that material parameters of hyperelastic material play an important role in defection analysis. Also, the effects of foundation parameter and load location on plate deflections will be discussed.

Keywords

Acknowledgement

The first and second authors would like to thank FPQ (Fidar project Qaem) for providing the fruitful and useful help.

References

  1. Ahmed, R.A., Mustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. http://doi.org/10.12989/sem.2020.76.3.413.
  2. Ali, A., Hosseini, M. and Sahari, B.B. (2010), "A review and comparison on some rubber elasticity models", J. Sci. Indust. Res., 69(7), 495-500.
  3. Barati, M.R. and Shahverdi, H. (2018), "Nonlinear vibration of nonlocal four-variable graded plates with porosities implementing homotopy perturbation and Hamiltonian methods", Acta Mechanica, 229(1), 343-362. https://doi.org/10.1007/s00707-017-1952-y.
  4. Barforooshi, S.D. and Mohammadi, A.K. (2016), "Study neo-Hookean and Yeoh hyper-elastic models in dielectric elastomer-based micro-beam resonators", Latin Am. J. Solid. Struct., 13(10), 1823-1837. https://doi.org/10.1590/1679-78252432.
  5. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  6. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  7. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009.
  8. Breslavsky, I.D., Amabili, M. and Legrand, M. (2014), "Nonlinear vibrations of thin hyperelastic plates", J. Sound Vib., 333(19), 4668-4681. https://doi.org/10.1016/j.jsv.2014.04.028.
  9. Du Toit, V. (2018), "Characterising material models for silicone-rubber using an inverse finite element model updating method", Doctoral Dissertation of Philosophy, Stellenbosch University.
  10. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2021), "Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading", Struct. Eng. Mech., 78(1), 15-22. http://doi.org/10.12989/sem.2021.78.1.015.
  11. Horgan, C.O. and Saccomandi, G. (2006), "Phenomenological hyperelastic strain-stiffening constitutive models for rubber", Rubber Chem. Tech., 79(1), 152-169. https://doi.org/10.5254/1.3547924.
  12. Marckmann, G. and Verron, E. (2006), "Comparison of hyperelastic models for rubber-like materials", Rubber Chem. Tech., 79(5), 835-858. https://doi.org/10.5254/1.3547969.
  13. Martins, P.A.L.S., Natal Jorge, R.M. and Ferreira, A.J.M. (2006), "A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues", Strain, 42(3), 135-147. https://doi.org/10.1111/j.1475-1305.2006.00257.x.
  14. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  15. Mirjavadi, S.S., Forsat, M. and Badnava, S. (2019), "Nonlinear modeling and dynamic analysis of bioengineering hyper-elastic tubes based on different material models", Biomech. Model. Mechanobio., 1-13. https://doi.org/10.1007/s10237-019-01265-8.
  16. Mohammadi, A.K. and Barforooshi, S.D. (2017), "Nonlinear forced vibration analysis of dielectric-elastomer based micro-beam with considering Yeoh hyper-elastic model", Latin Am. J. Solid. Struct., 14(4), 643-656. http://doi.org/10.1590/1679-78253324.
  17. Ogden, R.W., Saccomandi, G. and Sgura, I. (2004), "Fitting hyperelastic models to experimental data", Comput. Mech., 34(6), 484-502. https://doi.org/10.1007/s00466-004-0593-y.
  18. Shahzad, M., Kamran, A., Siddiqui, M. Z. and Farhan, M. (2015), "Mechanical characterization and FE modelling of a hyperelastic material", Mater. Res., 18(5), 918-924. https://doi.org/10.1590/1516-1439.320414.
  19. Soares, R.M. and Goncalves, P.B. (2018), "Nonlinear vibrations of a rectangular hyperelastic membrane resting on a nonlinear elastic foundation", Meccanica, 53(4-5), 937-955. https://doi.org/10.1007/s11012-017-0755-5.
  20. Steinmann, P., Hossain, M. and Possart, G. (2012), "Hyperelastic models for rubber-like materials: Consistent tangent operators and suitability for Treloar's data", Archiv. Appl. Mech., 82(9), 1183-1217. https://doi.org/10.1007/s00419-012-0610-z.
  21. Wang, Y., Ding, H. and Chen, L. Q. (2019), "Vibration of axially moving hyperelastic beam with finite deformation", Appl. Math. Model., 71, 269-285. https://doi.org/10.1016/j.apm.2019.02.011.