Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.1.039

Theoretical analysis of rotary hyperelastic variable thickness disk made of functionally graded materials  

Soleimani, Ahmad (Department of Mechanical Engineering, University of Jiroft)
Adeli, Mohsen Mahdavi (Department of Mechanical Engineering, Sousangerd Branch, Islamic Azad University)
Zamani, Farshad (Department of Mechanical Engineering, Isfahan University of Technology)
Gorgani, Hamid Haghshenas (Engineering Graphics Center, Sharif University of Technology)
Publication Information
Steel and Composite Structures / v.45, no.1, 2022 , pp. 39-49 More about this Journal
Abstract
This research investigates a rotary disk with variable cross-section and incompressible hyperelastic material with functionally graded properties in large hyperelastic deformations. For this purpose, a power relation has been used to express the changes in cross-section and properties of hyperelastic material. So that (m) represents the changes in cross-section and (n) represents the manner of changes in material properties. The constants used for hyperelastic material have been obtained from experimental data. The obtained equations have been solved for different m, n, and (angular velocity) values, and the values of radial stresses, tangential stresses, and elongation have been compared. The results show that m and n have a significant impact on disk behavior, so the expected behavior of the disk can be obtained by an optimal selection of these two parameters.
Keywords
deformation demand; earthquake resistant design philosophy; limit states; structural damage states; levels of earthquake shaking;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC Press.
2 Rivlin, R. (1948), "Large elastic deformations of isotropic materials IV. Further developments of the general theory", Phil. Trans. R. Soc. Lond. A. 241(835), 379-397. https://doi.org/10.1098/rsta.1948.0024.   DOI
3 Zamani Nejad, M., Rastgoo, A. and Hadi, A. (2014), "Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique", J. Solid Mech., 6(4), 366-377. https://dorl.net/dor/20.1001.1.20083505.2014.6.4.3.3.   DOI
4 Saravanan, U. and Rajagopal, K. (2004), A Comparison of the Response of Isotropic Inhomogeneous Elastic Cylindrical and Spherical Shells and Their Homogenized Counterparts, Springer
5 Saravanan, U. and Rajagopal, K. (2005), "Inflation, extension, torsion and shearing of an inhomogeneous compressible elastic right circular annular cylinder", Mathem. Mech. Solids, 10(6), 603-650. https://doi.org/10.1177/1081286505036422.   DOI
6 She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses. 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.   DOI
7 She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.   DOI
8 Timoshenko, S. and Goodier, J.J.F.-C.C.R.R.B.D.F.T.D.O.E.E., (1971), Theory of Elasticity, McGraw-Hill, New York.
9 Rabin, B.H. and Shiota, I. (1995), Functionally Gradient Materials, MRS bulletin, 20(1), 14-18.   DOI
10 Yeoh, O. (1990), "Characterization of elastic properties of carbonblack-filled rubber vulcanizates", Rubber Chemistry technology. 63(5), 792-805. https://doi.org/10.5254/1.3538289.   DOI
11 Zamani Nejad, M., Jabbari, M. and Hadi, A. (2017), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370. https://doi.org/10.22059/jcamech.2017.247963.220.   DOI
12 Horgan, C. and Polignone, D. (1995), "Cavitation in nonlinearly elastic solids: A review", Appl. Mech. Rev., 48(8), 471-485. https://doi.org/10.1115/1.3005108.   DOI
13 Ebrahimi, T., Nejad, M.Z., Jahankohan, H. and Hadi, A. (2021), "Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels", Steel Compos. Struct., 38(2), 189-211. https://doi.org/10.12989/scs.2021.38.2.189.   DOI
14 Emadi, M., Nejad, M.Z., Ziaee, S. and Hadi, A. (2021), "Buckling analysis of arbitrary two-directional functionally graded nanoplate based on nonlocal elasticity theory using generalized differential quadrature method", Steel Compos. Struct., 39(5), 565-581. https://doi.org/10.12989/scs.2021.39.5.565.   DOI
15 Holzapfel, G.A.J.M. (2002), "Nonlinear solid mechanics: a continuum approach for engineering science", 37(4), 489-490
16 Ikeda, Y. (2003), "Graded styrene-butadiene rubber vulcanizates", J. Appl. Polymer Sci., 87(1), 61-67. https://doi.org/10.1002/app.11670.   DOI
17 Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0.   DOI
18 Khoram, M.M., Hosseini, M., Hadi, A. and Shishehsaz, M. (2020), "Bending analysis of bidirectional FGM timoshenko nanobeam subjected to mechanical and magnetic forces and resting on winkler-pasternak foundation", Int. J. Appl. Mech., 12(08), 2050093. https://doi.org/10.1142/S1758825120500933.   DOI
19 Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428.https://doi.org/10.1016/j.ijmecsci.2021.106428.   DOI
20 Lu, L., Wang, S., Li, M. and Guo, X. (2021), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272, 114231. https://doi.org/10.1016/j.compstruct.2021.114231.   DOI
21 Saravanan, U. and Rajagopal, K. (2003), "On the role of inhomogeneities in the deformation of elastic bodies", Mathem. Mech. Solids, 8(4), 349-376. https://doi.org/10.1177/10812865030084002.   DOI
22 Batra, R. and Bahrami, A. (2009), "Inflation and eversion of functionally graded non-linear elastic incompressible circular cylinders", Int. J. Non-Linear Mech., 44(3), 311-323. https://doi.org/10.1016/j.ijnonlinmec.2008.12.005.   DOI
23 Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, The Institut of Materials
24 Blatz, P.J. and Ko, W.L. (1962), "Application of finite elastic theory to the deformation of rubbery materials", Transact. Soc. Rheology. 6(1), 223-252. https://doi.org/10.1122/1.548937.   DOI
25 Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary threedimensionally FGM nanoplates", Ad. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.   DOI
26 Zarezadeh, E., Hosseini, V. and Hadi, A. (2020), "Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory", Mech. Based Des. Struct. Machines. 48(4), 480-495. https://doi.org/10.1080/15397734.2019.1642766.   DOI
27 Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.-L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct. 38(3), 293-304.
28 Arruda, E.M. and Boyce, M.C. (1993), "A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials", J. Mech. Phys. Solids. 41(2), 389-412. https://doi.org/10.1016/0022-5096(93)90013-6.   DOI
29 Batra, R. (2006), "Torsion of a functionally graded cylinder", AIAA journal. 44(6), 1363-1365. https://doi.org/10.2514/1.19555.   DOI
30 Batra, R. (2008), "Optimal design of functionally graded incompressible linear elastic cylinders and spheres", AIAA J., 46(8), 2050-2057. https://doi.org/10.2514/1.34937.   DOI
31 Batra, R., Mueller, I., Strehlow, P.J.M. and solids, M.O. (2005), "Treloar's biaxial tests and Kearsley's bifurcation in rubber sheets", 10(6), 705-713. https://doi.org/10.1177/1081286505043032.   DOI
32 Beatty, M.F. (1987), "Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-with examples", Appl. Mech. Rev., 40(12), 1699-1734. https://doi.org/10.1115/1.3149545.   DOI
33 Mark, J.E., Erman, B. and Roland, M. (2013), The Science and Technology of Rubber, Academic Press
34 Bilgili, E., Bernstein, B. and Arastoopour, H. (2003), "Effect of material non-homogeneity on the inhomogeneous shearing deformation of a Gent slab subjected to a temperature gradient", Int. J. Non-Linear Mech., 38(9), 1351-1368. https://doi.org/10.1016/S0020-7462(02)00075-6.   DOI
35 Benatta, M., Mechab, I., Tounsi, A. and Bedia, E.A. (2008), "Static analysis of functionally graded short beams including warping and shear deformation effects", Comput. Mater. Sci., 44(2), 765-773. https://doi.org/10.1016/j.commatsci.2008.05.020.   DOI
36 Bilgili, E. (2004), "Functional grading of rubber tubes within the context of a molecularly inspired finite thermoelastic model", Acta Mech., 169(1-4), 79-85. https://doi.org/10.1007/s00707-004-0094-1.   DOI
37 Bilgili, E., Bernstein, B. and Arastoopour, H. (2002), "Influence of material non homogeneity on the shearing response of a neo hookean slab", Rubber Chemistry Technol., 75(2), 347-363. https://doi.org/10.5254/1.3544983.   DOI
38 Gharibi, M., Zamani Nejad, M. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Comput. Appl. Mech., 48(1), 89-98.
39 Iaccarino, G. and Batra, R. (2012), "Analytical solution for radial deformations of functionally graded isotropic and incompressible second-order elastic hollow spheres", J. Elasticity. 107(2), 179-197. https://doi.org/10.1007/s10659-011-9350-5.   DOI
40 Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.   DOI
41 Mooney, M. (1940), "A theory of large elastic deformation", J. Appl. Phys., 11(9), 582-592. https://doi.org/10.1063/1.1712836.   DOI
42 Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elastoplastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009.   DOI
43 Batra, R. (2011), "Material tailoring and universal relations for axisymmetric deformations of functionally graded rubberlike cylinders and spheres", Mathem. Mech. Solids. 16(7), 729-738. https://doi.org/10.1177/1081286510387404.   DOI
44 Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.   DOI
45 Ogden, R.W. (1972). "Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids", Proc. R. Soc. Lond. A. https://doi.org/10.1098/rspa.1972.0026.   DOI
46 Attard, M.M. (2003), "Finite strain-isotropic hyperelasticity", Int. J. Solids Struct., 40(17), 4353-4378. https://doi.org/10.1016/S0020-7683(03)00217-8.   DOI